Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow4x+\dfrac{3}{4}=2\cdot\dfrac{2}{5}+0.01\cdot10=\dfrac{9}{10}\)
=>4x=3/20
hay x=3/80
b: \(\Leftrightarrow\left|x\right|=4+\dfrac{1}{8}-9=-\dfrac{39}{8}\)(vô lý)
c: 2x(x-2/3)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{2}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
d: \(\dfrac{37-x}{x+13}=\dfrac{3}{7}\)
=>259-7x=3x+39
=>-10x=-220
hay x=22
a) \(\sqrt{16x}+\frac{3}{4}=2\sqrt{\frac{4}{25}}+0,01\cdot\sqrt{100}\)
=> \(\sqrt{16}\cdot\sqrt{x}+\frac{3}{4}=2\cdot\frac{2}{5}+\frac{1}{100}\cdot10\)
=> \(4\cdot\sqrt{x}+\frac{3}{4}=\frac{4}{5}+\frac{1}{10}\cdot1\)
=> \(4\cdot\sqrt{x}+\frac{3}{4}=\frac{4}{5}+\frac{1}{10}\)
=> \(4\cdot\sqrt{x}+\frac{3}{4}=\frac{8}{10}+\frac{1}{10}=\frac{9}{10}\)
=> \(4\cdot\sqrt{x}=\frac{9}{10}-\frac{3}{4}=\frac{3}{20}\)
=> \(\sqrt{x}=\frac{3}{20}:4\)
=> \(\sqrt{x}=\frac{3}{80}\)
=> \(x=\frac{9}{6400}\)
Vậy x = 9/6400
b) \(2\frac{3}{4}x=3\frac{1}{7}:0,01\)
=> \(\frac{11}{4}x=\frac{22}{7}:\frac{1}{100}\)
=> \(\frac{11}{4}x=\frac{22}{7}\cdot100\)
=> \(\frac{11}{4}x=\frac{2200}{7}\)
=> \(x=\frac{2200}{7}:\frac{11}{4}=\frac{2200}{7}\cdot\frac{4}{11}=\frac{800}{7}\)
Vậy x = 800/7
c) \(\left|x\right|+3^2=2^2+\left(\frac{1}{2}\right)^3\)
=> \(\left|x\right|+9=4+\frac{1}{8}\)
=> \(\left|x\right|+9=\frac{33}{8}\)
=> \(\left|x\right|=\frac{33}{8}-9=-\frac{39}{8}\)
Vì \(\left|x\right|\ge0\)mà \(-\frac{39}{8}< 0\)
=> x không thỏa mãn
a, \(-\frac{187}{70}\)
b,\(\frac{27}{70}\)
c,\(\frac{53}{14}\)
d,\(\frac{27}{4}\)
e,1
f,\(\frac{23}{4}\)
g,-1
i,6
k,315
l,\(\frac{9}{2}\)
a) \(\frac{1}{4}+\frac{1}{3}:2x=-5\)
\(\frac{1}{3}:2x=\frac{-21}{4}\)
\(2x=\frac{-4}{63}\)
\(x=\frac{2}{63}\)
b) \(\left(3x-\frac{1}{4}\right)\left(x+\frac{1}{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-\frac{1}{4}=0\\x+\frac{1}{2}=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{12}\\x=\frac{-1}{2}\end{cases}}\)
Vậy.........
a) \(\left(\frac{2^2}{5}\right)+5\frac{1}{2}.\left(4,5-2,5\right)+\frac{2^3}{-4}\)
\(=\frac{4}{5}+\frac{11}{2}.2+\frac{-8}{4}\)
\(=\frac{4}{5}+11-2\)
\(=\frac{4}{5}+9\)
\(=\frac{49}{9}\)
b) \(\left(-2^3\right)+\frac{1}{2}:\frac{1}{8}-\sqrt{25}+\left|-64\right|\)
\(=-8+4-5+64\)
= 55
c) \(\frac{\sqrt{3^2+\sqrt{39}^2}}{\sqrt{91^2}-\sqrt{\left(-7\right)^2}}\)
\(=\frac{\sqrt{9+39}}{91-\sqrt{49}}\)
\(=\frac{\sqrt{48}}{91-7}\)
\(=\frac{4\sqrt{3}}{84}\)
\(=\frac{\sqrt{3}}{41}\)
d) Xem lại đề nhé em!
e) \(\sqrt{25}-3\sqrt{\frac{4}{9}}\)
\(=5-3.\frac{2}{3}\)
= 5 - 2
= 3
h) \(\left(-3^2\right).\frac{1}{3}-\sqrt{49}+\left(5^3\right):\sqrt{25}\)
\(=-9.\frac{1}{3}-7+125:5\)
\(=-3-7+25\)
= 15
\(3\frac{1}{2}-\frac{1}{2}.\left(-4,25-\frac{3}{4}\right)^2:\frac{5}{4}\)
\(=\frac{7}{2}-\frac{1}{2}.\left(-4,25-0,75\right)^2:\frac{5}{4}\)
\(=\frac{7}{2}-\frac{1}{2}.\left(-5\right)^2:\frac{5}{4}\)
\(=\frac{7}{2}-\frac{1}{2}.5.\frac{4}{5}\)
\(=\frac{7}{2}-2\)
\(=\frac{7}{2}-\frac{4}{2}\)
\(=\frac{3}{2}\)
\(\frac{3}{7}.1\frac{1}{2}+\frac{3}{7}.0,5-\frac{3}{7}.9\)
\(=\frac{3}{7}.\left(\frac{3}{2}+\frac{1}{2}-9\right)\)
\(=\frac{3}{7}.\left(2-9\right)\)
\(=\frac{3}{7}.\left(-7\right)\)
\(=-3\)
\(\frac{125^{2016}.8^{2017}}{50^{2017}.20^{2018}}=\frac{\left(5^3\right)^{2016}.\left(2^3\right)^{2017}}{\left(5^2\right)^{2017}.2^{2017}.\left(2^2\right)^{2018}.5^{2018}}=\frac{\left(5^3\right)^{2016}.\left(2^3\right)^{2017}}{\left(5^3\right)^{2017}.\left(2^3\right)^{2017}.2.5}=\frac{1}{5^4.2}=\frac{1}{1250}\)( tính nhẩm, ko chắc đúng )
1
a) \(3\frac{1}{2}-\frac{1}{2}\cdot\left(-4,25-\frac{3}{4}\right)^2\) : \(\frac{5}{4}\)
= \(3\cdot25:\frac{5}{4}\)
= \(3\cdot\left(25:\frac{5}{4}\right)\)
=\(3\cdot20\)
=60
b)=\(\frac{3}{7}\cdot\left(1\frac{1}{2}+0,5-9\right)\)
=\(\frac{3}{7}\cdot\left(-7\right)\)
=\(-3\)
c) =
a) \(\sqrt{16}x+\frac{3}{4}=2\sqrt{\frac{4}{25}}+0,01.\sqrt{100}\)
=> \(4x+\frac{3}{4}=2\cdot\frac{2}{5}+0,01\cdot10\)
=> \(4x+\frac{3}{4}=\frac{4}{5}+0,1\)
=> \(4x+\frac{3}{4}=0,9\)
=> \(4x=0,9-\frac{3}{4}\)
=> \(4x=0,15\)
=> \(x=0,15:4=0,0375\)
b) \(\left(x-\frac{2}{5}\right)\left(x+\frac{3}{7}\right)=0\)
=> \(\orbr{\begin{cases}x-\frac{2}{5}=0\\x+\frac{3}{7}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{2}{5}\\x=-\frac{3}{7}\end{cases}}\)