Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d,
\(|x-\frac{1}{3}|=\frac{5}{6}\Rightarrow \left[\begin{matrix} x-\frac{1}{3}=\frac{5}{6}\\ x-\frac{1}{3}=-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{7}{6}\\ x=\frac{-1}{2}\end{matrix}\right.\)
e,
\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)
\(\Leftrightarrow 2|2x-\frac{2}{3}|=\frac{3}{4}-2=\frac{-5}{4}\)
\(\Leftrightarrow |2x-\frac{2}{3}|=-\frac{5}{8}<0\) (vô lý vì trị tuyệt đối của 1 số luôn không âm)
Vậy không tồn tại $x$ thỏa mãn đề bài.
f,
\(\frac{2x-1}{2}=\frac{5+3x}{3}\Leftrightarrow 3(2x-1)=2(5+3x)\)
\(\Leftrightarrow 6x-3=10+6x\)
\(\Leftrightarrow 13=0\) (vô lý)
Vậy không tồn tại $x$ thỏa mãn đề bài.
a,
$0-|x+1|=5$
$|x+1|=0-5=-5<0$ (vô lý do trị tuyệt đối của một số luôn không âm)
Do đó không tồn tại $x$ thỏa mãn điều kiện đề.
b,
\(2-|\frac{3}{4}-x|=\frac{7}{12}\)
\(|\frac{3}{4}-x|=2-\frac{7}{12}=\frac{17}{12}\)
\(\Rightarrow \left[\begin{matrix} \frac{3}{4}-x=\frac{17}{12}\\ \frac{3}{4}-x=\frac{-17}{12}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-2}{3}\\ x=\frac{13}{6}\end{matrix}\right.\)
c,
\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)
\(2|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{4}\)
\(|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{8}\)
\(\Rightarrow \left[\begin{matrix} \frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\ \frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{29}{12}\\ x=\frac{-13}{12}\end{matrix}\right.\)
a) (x + 1/2) . (2/3 − 2x) = 0
\(\Rightarrow\left[\begin{array}{nghiempt}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\2x=\frac{2}{3}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\x=\frac{1}{3}\end{array}\right.\)
b) \(\left(x.6\frac{2}{7}+\frac{3}{7}\right).2\frac{1}{5}-\frac{3}{7}=-2\)
\(\Rightarrow\left(x.\frac{44}{7}+\frac{3}{7}\right).\frac{11}{5}=-2+\frac{3}{7}\)
\(\Rightarrow\left(x.\frac{44}{7}+\frac{3}{7}\right).\frac{11}{5}=-\frac{11}{7}\)
\(\Rightarrow x.\frac{44}{7}+\frac{3}{7}=-\frac{11}{7}:\frac{11}{5}=-\frac{11}{7}.\frac{5}{11}\)
\(\Rightarrow x.\frac{44}{7}+\frac{3}{7}=-\frac{5}{7}\)
\(\Rightarrow x.\frac{44}{7}=-\frac{5}{7}-\frac{3}{7}\)
\(\Rightarrow x.\frac{44}{7}=-\frac{8}{7}\)
\(\Rightarrow x=-\frac{8}{7}:\frac{44}{7}=-\frac{8}{7}.\frac{7}{44}\)
\(\Rightarrow x=-\frac{2}{11}\)
c) \(x.3\frac{1}{4}+\left(-\frac{7}{6}\right).x-1\frac{2}{3}=\frac{5}{12}\)
\(\Rightarrow x\left(3\frac{1}{4}-\frac{7}{6}\right)=\frac{5}{12}+\frac{5}{3}\)
\(\Rightarrow x\left(\frac{13}{4}-\frac{7}{6}\right)=\frac{25}{12}\)
\(\Rightarrow x.\frac{25}{12}=\frac{25}{12}\)
\(\Rightarrow x=\frac{25}{12}:\frac{25}{12}\)
\(\Rightarrow x=1\)
d) \(5\frac{8}{17}:x+\left(-\frac{4}{17}\right):x+3\frac{1}{7}:17\frac{1}{3}=\frac{4}{11}\)
\(\Rightarrow\left(5\frac{8}{17}-\frac{4}{17}\right):x+\frac{22}{7}:\frac{52}{3}=\frac{4}{11}\)
\(\Rightarrow5\frac{4}{17}:x+\frac{33}{182}=\frac{4}{11}\)
\(\Rightarrow\frac{89}{17}:x=\frac{4}{11}-\frac{33}{182}\)
\(\Rightarrow\frac{89}{17}:x=\frac{365}{2002}\)
\(\Rightarrow x=\frac{89}{17}:\frac{365}{2002}\)
\(\Rightarrow x\approx28,7\) (số hơi lẻ)
e) \(\frac{17}{2}-\left|2x-\frac{3}{4}\right|=-\frac{7}{4}\)
\(\Rightarrow\left|2x-\frac{3}{4}\right|=\frac{17}{2}+\frac{7}{4}\)
\(\Rightarrow\left|2x-\frac{3}{4}\right|=\frac{41}{4}\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x-\frac{3}{4}=\frac{41}{4}\\2x-\frac{3}{4}=-\frac{41}{4}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x=11\\2x=-\frac{19}{2}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{11}{2}\\x=-\frac{19}{4}\end{array}\right.\)
a) 3x - 2 = 0 => 3x = 2 => x = 2/3
b) 2x - 1 = 0 => 2x = 1 => x = 1/2
c) 5 ( 4+2x) = 8+5x
<=> 20 + 10x = 8 + 5x
<=> 10x - 5x = 8 - 20
<=> 5x = -12
x = -12/5
d) \(\frac{1}{2}+\frac{3}{4}x=6-\frac{4}{5}x\)
\(\frac{3}{4}x+\frac{4}{5}x=6-\frac{1}{2}\)
\(\frac{31}{20}x=\frac{11}{2}\)
\(x=\frac{11}{2}:\frac{31}{20}=\frac{110}{31}\)
e) 3 + 2x = 4 - 8x
<=> 2x + 8x = 4 - 3
10 x = 1
x = 1/10
f \(5+\frac{1}{2}\left(x+5\right)=3\)
\(\frac{1}{2}\left(x+5\right)=3-5=-2\)
\(x+5=-2:\frac{1}{2}=-4\)
\(x=-4-5=1\)
Vậy ......
a) \(\frac{2}{5}:\left(2x+\frac{3}{4}\right)=-\frac{7}{10}\)
=> \(2x+\frac{3}{4}=-\frac{7}{10}:\frac{2}{5}\)
=> \(2x+\frac{3}{4}=-\frac{7}{4}\)
=> \(2x=\frac{-7}{4}-\frac{3}{4}\)
=> \(2x=-\frac{5}{2}\)
=> \(x=\frac{-5}{2}:2\)
=> \(x=\frac{-5}{4}\)
b) \(\frac{x+1}{3}=\frac{2-x}{2}\)
\(\Rightarrow2\left(x+1\right)=3\left(2-x\right)\)
\(\Rightarrow2x+2=6-3x\)
\(\Rightarrow2x-3x=6-2\)
\(\Rightarrow-x=4\)
\(\Rightarrow x=4\)
c) \(\left|x-\frac{3}{5}\right|.\frac{1}{2}-\frac{1}{5}=0\)
\(\Rightarrow\left|x-\frac{3}{5}\right|.\frac{1}{2}=\frac{1}{5}\)
\(\Rightarrow\left|x-\frac{3}{5}\right|=\frac{1}{5}:\frac{1}{2}\)
\(\Rightarrow\left|x-\frac{3}{5}\right|=\frac{2}{5}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{3}{5}=\frac{2}{5}\\x-\frac{3}{5}=-\frac{2}{5}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=\frac{3}{5}+\frac{2}{5}\\x=\frac{3}{5}+-\frac{2}{5}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}\)
d) \(x^2-4x=0\)
Ta có : \(x^2-4x=0\)
\(\Rightarrow xx-4x=0\)
\(\Rightarrow x\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=0+4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
a) \(\frac{x-1}{6}=\frac{2x+3}{7}\)
\(\Leftrightarrow7\left(x-1\right)=6\left(2x+3\right)\)
\(\Leftrightarrow7x-7=12x+18\)
\(\Leftrightarrow5x+18=-7\)
\(\Leftrightarrow5x=-25\)
\(\Leftrightarrow x=-5\)
b) \(\left(2x^2-\frac{1}{2}x\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x\left(2x-\frac{1}{2}\right)\left(x^2+1\right)=0\)
Vì \(x^2+1>0\)nên \(\orbr{\begin{cases}x=0\\2x-\frac{1}{2}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}\)
a)\(\left(x+\frac{1}{2}\right)\left(\frac{2}{3}-2x\right)=0\)
*)x+1/2=0 hay 2/3-2x=0
x=0-1/2 hay 2x=2/3-0=2/3
x=-1/2 hay x=2/3:2
x=1/3
Vậy x=-1/2 hay x=1/3
b)\(x\cdot3\frac{1}{4}+\frac{-7}{6}x-1\frac{2}{3}=\frac{5}{12}\)
\(x\cdot\frac{13}{4}+\frac{-7}{6}x-\frac{5}{3}=\frac{5}{12}\)
\(x\cdot\left(\frac{13}{4}-\frac{7}{6}\right)=\frac{5}{12}+\frac{5}{3}=\frac{5}{12}+\frac{20}{12}\)
\(x\cdot\left(\frac{39}{12}-\frac{14}{12}\right)=\frac{25}{12}\)
\(x\cdot\frac{25}{12}=\frac{25}{12}\)
\(x=\frac{25}{12}:\frac{25}{12}=1\) . Vậy x=1
\(a,\left|\frac{1}{2}-2x\right|+\frac{2}{3}=\frac{7}{3}\)
\(\Leftrightarrow\left|\frac{1}{2}-2x\right|=\frac{7}{3}-\frac{2}{3}\)
\(\Leftrightarrow\left|\frac{1}{2}-2x\right|=\frac{5}{3}\)
\(\Rightarrow\orbr{\begin{cases}\frac{1}{2}-2x=\frac{5}{3}\\\frac{1}{2}-2x=-\frac{5}{3}\end{cases}}\Rightarrow\orbr{\begin{cases}2x=-\frac{7}{6}\\2x=\frac{13}{6}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-\frac{7}{6}:2\\x=\frac{13}{6}:2\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{7}{12}\\x=\frac{13}{12}\end{cases}}\)
Vậy \(x=-\frac{7}{12}\)hoặc \(x=\frac{13}{12}\)
\(b,\left(2x+1\right)+100^0=2^4:50^0\)
\(\Leftrightarrow\left(2x+1\right)+1=2^4:1\)
\(\Leftrightarrow\left(2x+1\right)+1=16\)
\(\Leftrightarrow2x+1=16-1\)
\(\Leftrightarrow2x+1=15\)
\(\Leftrightarrow2x=14\)
\(\Rightarrow x=14:2\)
\(\Rightarrow x=7\)