K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2018

\(a.4\left(x+2\right)-7\left(2x-1\right)+9\left(3x-4\right)=30\\ 4x+8-14x+7+27x-36=30\\ 17x+15=66\\ 17x=51\Rightarrow x=3\)

\(b.2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\\ =10x-16-12x+15=12x-16+11\\ -2x-1=12x-5\\ \Leftrightarrow-2x-12x=1-5\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{7}{2}\)

\(c.4x^2+3\left(2x^2+1\right)=2x\left(5x-7\right)\\ 4x^2+6x^2+3=10x^2-14x\\ 10x^2+3=10x^2-14x\\ \Leftrightarrow3=14x\\\Rightarrow x=\dfrac{3}{14}\)

\(d.x\left(x^2-7\right)=2x\left(\dfrac{1}{2}x^2+6\right)+8\\ x^3-7x=x^3+12x+8\\ \Leftrightarrow-7x=12x+8\\ \Leftrightarrow-7x-12x=8\\ \Leftrightarrow-19x=8\Rightarrow x=-\dfrac{8}{19}\)

a: =>5-x+6=12-8x

=>-x+11=12-8x

=>7x=1

hay x=1/7

b: \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)

\(\Leftrightarrow9x+6-3x-1=12x+10\)

=>12x+10=6x+5

=>6x=-5

hay x=-5/6

d: =>(x-2)(x-3)=0

=>x=2 hoặc x=3

29 tháng 3 2020

1) Ta có : \(4x+20=0\)

=> \(x=-\frac{20}{4}=-5\)

Vậy phương trình có tập nghiệm là \(S=\left\{-5\right\}\)

2) Ta có : \(3x+15=30\)

=> \(3x=15\)

=> \(x=5\)

Vậy phương trình có tập nghiệm là \(S=\left\{5\right\}\)

3) Ta có : \(8x-7=2x+11\)

=> \(8x-2x=11+7=18\)

=> \(6x=18\)

=> \(x=3\)

Vậy phương trình có tập nghiệm là \(S=\left\{3\right\}\)

4) Ta có : \(2x+4\left(36-x\right)=100\)

=> \(2x+144-4x=100\)

=> \(-2x=-44\)

=> \(x=22\)

Vậy phương trình có tập nghiệm là \(S=\left\{22\right\}\)

5) Ta có : \(2x-\left(3-5x\right)=4\left(x+3\right)\)

=> \(2x-3+5=4x+12\)

=> \(-2x=10\)

=> \(x=-5\)

Vậy phương trình có tập nghiệm là \(S=\left\{-5\right\}\)

29 tháng 3 2020

1) 4x+20=0

\(\Leftrightarrow\) 4x=-20

\(\Leftrightarrow\) x=-5

Vậy pt trên có tập nghiệm là S={-5}

2) 3x+15=30

\(\Leftrightarrow\) 3x=15

\(\Leftrightarrow\) x=5

Vậy pt trên có tập nghiệm là S={5}

3) 8x-7=2x+11

\(\Leftrightarrow\) 8x-2x=11+7

\(\Leftrightarrow\) 6x=18

\(\Leftrightarrow\) x=3

Vậy pt trên có tập nghiệm là S={3}

4) 2x+4(36-x)=100

\(\Leftrightarrow\) 2x+144-4x=100

\(\Leftrightarrow\) -2x+144=100

\(\Leftrightarrow\) -2x=-44

\(\Leftrightarrow\) x=22

Vậy pt trên có tập nghiệm là S={22}

5) 2x-(3-5x)=4(x+3)

\(\Leftrightarrow\) 2x-3+5x=4x+12

\(\Leftrightarrow\) 2x+5x-4x=12+3

\(\Leftrightarrow\) 3x=15

\(\Leftrightarrow\) x=5

Vậy pt trên có tập nghiệm là S={5}

6) 3x(x+2)=3(x-2)2

\(\Leftrightarrow\) 3x2+6x=3(x2-2x.2+22)

\(\Leftrightarrow\) 3x2+6x=3x2-12x+12

\(\Leftrightarrow\) 3x2-3x2+6x+12x=12

\(\Leftrightarrow\) 18x=12

\(\Leftrightarrow\) x=\(\frac{2}{3}\)

18 tháng 7 2017

a) \(\left(4x-1\right)^2-\left(3x+2\right)\left(3x-2\right)=\left(7x-1\right)\left(x+2\right)+\left(2x+1\right)^2-\left(4x^2+7\right)\)(1)

\(\Leftrightarrow\left(16x^2-8x+1\right)-\left(9x^2-4\right)=\left(7x^2+14x-x-2\right)+\left(4x^2+4x+1\right)-\left(4x^2+7\right)\)

\(\Leftrightarrow16x^2-8x+1-9x^2+4=7x^2+13x-2+4x^2+4x+1-4x^2-7\)

\(\Leftrightarrow7x^2-8x+5=7x^2+17x-8\)

\(\Leftrightarrow7x^2-8x-7x^2-17x=-8-5\)

\(\Leftrightarrow-25x=-13\)

\(\Leftrightarrow x=\dfrac{13}{25}\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{13}{25}\right\}\)

18 tháng 7 2017

gắp cái gì

31 tháng 12 2019

a) (2x - 1)(3x + 5) - 2(-4x + 1)2 = 6x2 + 10x - 3x - 5 - 2(16x2 - 8x + 1) = 6x2 - 3x - 5 - 32x2 + 16x - 2 = -26x2 + 13x - 7

b) \(\frac{x^2-16}{4x-x^2}=\frac{\left(x-4\right)\left(x+4\right)}{-x\left(x-4\right)}=-\frac{x+4}{x}\)

c) \(\frac{2x-9}{x^2-5x+6}+\frac{2x+1}{x-3}+\frac{x+3}{2-x}\)

\(\frac{2x-9}{x^2-2x-3x+6}+\frac{\left(2x+1\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}-\frac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x-2\right)}\)

\(\frac{2x-9+2x^2-3x-2-x^2+9}{\left(x-3\right)\left(x-2\right)}\)

\(\frac{x^2-x-2}{\left(x-3\right)\left(x-2\right)}\)

\(\frac{x^2-2x+x-2}{\left(x-3\right)\left(x-2\right)}\)

\(\frac{\left(x+1\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}=\frac{x+1}{x-3}\)

d) (x - 1)3 - (x + 1)3 + 6(x + 1)(x - 1)

= (x - 1 - x - 1)[(x - 1)2 + (x - 1)(x + 1) + (x + 1)2] + 6(x2 - 1)

= -2(x2 - 2x + 1  + x2 - 1 + x2 + 2x + 1) + 6x2 - 6

= -2(3x2 + 1) + 6x2 - 6

= -6x2 - 2 + 6x2  - 6

= -8

e) (2x + 7)2 - (4x + 14)(2x - 8) + (8 - 2x)2

= (2x + 7)2 - 2(2x + 7)(2x - 8) + (2x - 8)2

= (2x + 7 - 2x + 8)2

= 152 = 225

19 tháng 2 2019

1) \(\left(5x-4\right)\left(4x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-4=0\\4x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=4\\4x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{4}{5};\dfrac{3}{2}\right\}\)

2) \(\left(4x-10\right)\left(24+5x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=10\\5x=-24\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-24}{5}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{5}{2};\dfrac{-24}{5}\right\}\)

3) \(\left(x-3\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{-1}{2}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S = \(\left\{3;\dfrac{-1}{2}\right\}\)

22 tháng 4 2020

d, (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0

Đặt x2 + 4x + 8 = t ta được:

t2 + 3xt + 2x2 = 0

\(\Leftrightarrow\) t2 + xt + 2xt + 2x2 = 0

\(\Leftrightarrow\) t(t + x) + 2x(t + x) = 0

\(\Leftrightarrow\) (t + x)(t + 2x) = 0

Thay t = x2 + 4x + 8 ta được:

(x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0

\(\Leftrightarrow\) (x2 + 5x + 8)[x(x + 4) + 2(x + 4)] = 0

\(\Leftrightarrow\) (x2 + 5x + \(\frac{25}{4}\) + \(\frac{7}{4}\))(x + 4)(x + 2) = 0

\(\Leftrightarrow\) [(x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\)](x + 4)(x + 2) = 0

Vì (x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x

\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-2\end{matrix}\right.\)

Vậy S = {-4; -2}

Mình giúp bn phần khó thôi!

Chúc bn học tốt!!

22 tháng 4 2020

c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)

\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

⇒x2+x+1+2x2-5=4x-4

⇔3x2-3x=0

⇔3x(x-1)=0

⇔x=0 (TMĐK) hoặc x=1 (loại)

Vậy tập nghiệm của phương trình đã cho là:S={0}