Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x}{5}=\frac{2}{3}\)
\(\Rightarrow\)\(x=\frac{2.5}{3}=\frac{10}{3}\)
Vậy....
b) \(\frac{x+3}{15}=\frac{1}{5}\)
\(\Leftrightarrow\)\(5\left(x+3\right)=15\)
\(\Leftrightarrow\)\(x+3=3\)
\(\Leftrightarrow\)\(x=0\)
Vậy....
\(a,\frac{1}{2}+\frac{2}{3}x=\frac{4}{5}\)
=> \(\frac{2}{3}x=\frac{4}{5}-\frac{1}{2}=\frac{3}{10}\)
=> \(x=\frac{3}{10}:\frac{2}{3}=\frac{9}{20}\)
Vậy \(x\in\left\{\frac{9}{20}\right\}\)
\(b,x+\frac{1}{4}=\frac{4}{3}\)
=> \(x=\frac{4}{3}-\frac{1}{4}=\frac{13}{12}\)
Vậy \(x\in\left\{\frac{13}{12}\right\}\)
\(c,\frac{3}{5}x-\frac{1}{2}=-\frac{1}{7}\)
=> \(\frac{3}{5}x=-\frac{1}{7}+\frac{1}{2}=\frac{5}{14}\)
=> \(x=\frac{5}{14}:\frac{3}{5}=\frac{25}{42}\)
Vậy \(x\in\left\{\frac{25}{42}\right\}\)
\(d,\left|x+5\right|-6=9\)
=> \(\left|x+5\right|=9+6=15\)
=> \(\left[{}\begin{matrix}x+5=15\\x+5=-15\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=15-5=10\\x=-15-5=-20\end{matrix}\right.\)
Vậy \(x\in\left\{10;-20\right\}\)
\(e,\left|x-\frac{4}{5}\right|=\frac{3}{4}\)
=> \(\left[{}\begin{matrix}x-\frac{4}{5}=\frac{3}{4}\\x-\frac{4}{5}=-\frac{3}{4}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{3}{4}+\frac{4}{5}=\frac{31}{20}\\x=-\frac{3}{4}+\frac{4}{5}=\frac{1}{20}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{31}{20};\frac{1}{20}\right\}\)
\(f,\frac{1}{2}-\left|x\right|=\frac{1}{3}\)
=> \(\left|x\right|=\frac{1}{2}-\frac{1}{3}\)
=> \(\left|x\right|=\frac{1}{6}\)
=> \(\left[{}\begin{matrix}x=\frac{1}{6}\\x=-\frac{1}{6}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{1}{6};-\frac{1}{6}\right\}\)
\(g,x^2=16\)
=> \(\left|x\right|=\sqrt{16}=4\)
=> \(\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
vậy \(x\in\left\{4;-4\right\}\)
\(h,\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)
=> \(x-\frac{1}{2}=\sqrt[3]{\frac{1}{27}}=\frac{1}{3}\)
=> \(x=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}\)
Vậy \(x\in\left\{\frac{5}{6}\right\}\)
\(i,3^3.x=3^6\)
\(x=3^6:3^3=3^3=27\)
Vậy \(x\in\left\{27\right\}\)
\(J,\frac{1,35}{0,2}=\frac{1,25}{x}\)
=> \(x=\frac{1,25.0,2}{1,35}=\frac{5}{27}\)
Vậy \(x\in\left\{\frac{5}{27}\right\}\)
\(k,1\frac{2}{3}:x=6:0,3\)
=> \(\frac{5}{3}:x=20\)
=> \(x=\frac{5}{3}:20=\frac{1}{12}\)
Vậy \(x\in\left\{\frac{1}{12}\right\}\)
\(\frac{3}{2}x-\frac{2}{3}=\frac{2}{3}:\frac{3}{2}\)
\(\frac{3}{2}x-\frac{2}{3}=\frac{4}{9}\)
\(\frac{3}{2}x=\frac{4}{9}+\frac{2}{3}\)
\(\frac{3}{2}x=\frac{10}{9}\)
\(x=\frac{10}{9}:\frac{3}{2}\)
\(x=\frac{20}{27}\)
Vậy x=\(\frac{20}{27}\)
\(\left(\frac{9}{11}-x\right):\frac{-10}{11}=1-\frac{4}{5}\)
\(\left(\frac{9}{11}-x\right):\frac{-10}{11}=\frac{1}{5}\)
\(\frac{9}{11}-x=\frac{1}{5}\cdot\frac{-10}{11}\)
\(\frac{9}{11}-x=\frac{-2}{11}\)
\(x=\frac{9}{11}-\frac{-2}{11}\)
\(x=1\)
Vậy x=1
\(\frac{-11}{12}\cdot x+\frac{3}{4}=\frac{-1}{6}\)
\(\frac{-11}{12}\cdot x=\frac{-1}{6}-\frac{3}{4}\)
\(\frac{-11}{12}\cdot x=\frac{21}{12}\)
\(x=\frac{-21}{11}\)
Vậy x=\(\frac{-21}{11}\)
\(\frac{-5}{4}-\left(1\frac{1}{2}+x\right)=4,5\)
\(\frac{3}{2}+x=\frac{-5}{4}-\frac{9}{2}\)
\(\frac{3}{2}+x=\frac{23}{4}\)
\(x=\frac{17}{4}\)
Vậy x=\(\frac{17}{4}\)
\(\left(\frac{3}{4}-x:\frac{2}{15}\right)\cdot\frac{1}{5}=-2,6\)
\(\frac{3}{4}-x:\frac{2}{15}=\frac{-13}{5}:\frac{1}{5}\)
\(\frac{3}{4}-x:\frac{2}{15}=-13\)
\(x:\frac{2}{15}=\frac{3}{4}-\left(-13\right)\)
\(x:\frac{2}{15}=\frac{45}{4}\)
\(x=\frac{3}{2}\)
Vậy x=\(\frac{3}{2}\)
\(3-\left(\frac{1}{6}-x\right)\cdot\frac{2}{3}=\frac{2}{3}\)
\(3-\left(\frac{1}{6}-x\right)=\frac{2}{3}:\frac{2}{3}\)
\(3-\left(\frac{1}{6}-x\right)=1\)
\(\frac{1}{6}-x=2\)
\(x=\frac{1}{6}-2\)
\(x=\frac{-11}{6}\)
Vậy x=\(\frac{-11}{6}\)
\(\left(1-2x\right)\cdot\frac{4}{5}=\left(-2\right)^3\)
\(1-2x=\frac{-1}{10}\)
\(2x=1-\frac{-1}{10}\)
\(2x=\frac{11}{10}\)
\(x=\frac{11}{20}\)
Vậy x=\(\frac{11}{20}\)
\(\frac{1}{6}-\left|\frac{1}{2}\cdot x-\frac{1}{3}\right|=\frac{1}{8}\)
\(\left|\frac{1}{2}\cdot x-\frac{1}{3}\right|=\frac{7}{12}\)
\(\Rightarrow\frac{1}{2}x-\frac{1}{3}=\frac{7}{12}\) \(\frac{1}{2}x-\frac{1}{3}=\frac{-7}{12}\)
\(\frac{1}{2}x=\frac{11}{12}\) \(\frac{1}{2}x=\frac{-1}{4}\)
\(x=\frac{11}{6}\) \(x=\frac{-1}{2}\)
Vậy \(x\in\left\{\frac{11}{6};\frac{-1}{2}\right\}\)
\(\frac{3}{2}x-\frac{2}{3}=\frac{2}{3}:\frac{3}{2}\)
\(\frac{3}{2}x=\frac{4}{9}+\frac{6}{9}\)
\(\frac{3}{2}x=\frac{10}{9}\)
\(x=\frac{10}{9}:\frac{3}{2}\)
\(x=\frac{20}{27}\)
tk mình đi mình làm nốt cho hjhj ^^
a) \(\frac{4}{3}x-1=\frac{x}{5}\)
=> \(\frac{4}{3}x-\frac{1}{5}x=1\)
=> \(\frac{17}{15}x=1\)
=> \(x=1:\frac{17}{15}=\frac{15}{17}\)
b) \(x+50\%=\frac{4\left(x+1\right)}{3}-\frac{1}{3}\)
=> \(x+\frac{1}{2}=\frac{4x+4-1}{3}\)
=> \(\frac{2x+1}{2}=\frac{4x+3}{3}\)
=> \(\left(2x+1\right).3=2.\left(4x+3\right)\)
=> \(6x+3=8x+6\)
=> \(6x-8x=6-3\)
=> \(-2x=3\)
=> \(x=3:\left(-2\right)=-\frac{3}{2}\)
\(a,\frac{4}{3}x-1=\frac{x}{5}\)
\(\Rightarrow\frac{4}{3}x=\frac{x}{5}+1\)
\(\Rightarrow\frac{4x}{3}=\frac{x+5}{5}\)
\(\Rightarrow20x=3x+15\)
\(\Rightarrow17x=15\)
\(\Rightarrow x=\frac{15}{17}\)
\(b,x+50\%=\frac{4\left(x+1\right)}{3}-\frac{1}{3}\)
\(\Rightarrow x+\frac{1}{2}=\frac{4x+4-1}{3}\)
\(\Rightarrow\frac{2x+1}{2}=\frac{4x+3}{3}\)
\(\Rightarrow3\left(2x+1\right)=\left(4x+3\right).2\)
\(\Rightarrow6x+3=8x+6\)
\(\Rightarrow2x=-3\)
\(\Rightarrow x=-\frac{3}{2}\)
\(c,-200\%.x+\frac{4}{3}=\frac{7}{4}\left(x+1\right)\)
\(\Rightarrow-2x+\frac{4}{3}=\frac{7}{4}x+\frac{7}{4}\)
\(\Rightarrow\frac{-6x+4}{3}=\frac{7x+7}{4}\)
\(\Rightarrow4\left(-6x+4\right)=\left(7x+7\right)3\)
\(\Rightarrow-24x+16=21x+21\)
\(\Rightarrow45x=-5\)
\(\Rightarrow x=-\frac{1}{7}\)
a) \(3x-\frac{1}{5}=\frac{4+x}{2}\)
=> \(\frac{15x-1}{5}=\frac{4+x}{2}\)
=> \(\left(15x-1\right).2=\left(4+x\right).5\)
=> \(30x-2=20+5x\)
=> \(30x-5x=20+2\)
=> \(25x=22\)
=> \(x=\frac{22}{25}\)
b) \(\frac{4}{3}x-1=\frac{4\left(x+1\right)}{3}-\frac{1}{3}\)
=> \(\frac{1}{3}x=\frac{4x+4-1}{3}\)
=> \(\frac{1}{3}x=\frac{4x+3}{3}\)
=> \(3x=3\left(4x+3\right)\)
=> \(3x=12x+9\)
=> \(3x-12x=9\)
=> \(-9x=9\)
=> \(x=9:\left(-9\right)=-1\)
c đâu bạn