K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2017

a, (x-2016)(2x-1)=0

<=>x=2016 hoặc x=-1/2

b, (x+2)(x+2-x+2)=0

<=>4(x+2)=0

<=>x+2=0

<=>x=-2

25 tháng 12 2017

a) 2x(x-2016)-x+2016=0

=>2x(x-2016)-(x-2016)=0

=>(x-2016)(2x-1)=0

=>\(\left\{{}\begin{matrix}x-2016=0\\2x-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2016\\x=\dfrac{1}{2}\end{matrix}\right.\)

vậy x=2016 hoặc x=\(\dfrac{1}{2}\)

b) (x+2)2-(x-2)(x+2)=0

=>(x+2)[(x+2)-(x-2)]=0

=>(x+2)(x+2-x+2)=0

=>(x+2)4=0

=>x+2=0

=>x=-2

vậy x=-2

18 tháng 12 2017
a.2x(x-2016)-x+2016 =0 <=>(x-2016)(2x-1)=0 =>x-2016=0 hoặc 2x-1=0 =>x=2016 hoặc x=1/2
3 tháng 7 2015

từ đề bài => \(x^2+2y+1+y^2+2z+1+z^2+2x+1=0\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+\left(z^2+2z+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)=> x=-1; y=-1 và z=-1

A=-1^2016+ -1^2016+ -1^2016=1+1+1=3

26 tháng 8 2016

a)x2(x+1)+2x(x+1)=0

=>(x2+2x)(x+1)=0

=>x(x+2)(x+1)=0

=>x=0 hoặc x+2=0 hoặc x+1=0

=>x=0 hoặc x=-2 hoặc x=-1

 b)x(3x-2)-5(2-3x)=0

=>x(3x-2)+5(3x-2)=0

=>(x+5)(3x-2)

=>x+5=0 hoặc 3x-1=0

=>x=-5 hoặc \(x=\frac{2}{3}\)

c)\(\frac{4}{9}-25x^2=0\)

\(\Rightarrow\left(\frac{2}{3}\right)^2-\left(5x\right)^2=0\)

\(\Rightarrow\left(\frac{2}{3}-5x\right)\left(\frac{2}{3}+5x\right)=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}\frac{2}{3}-5x=0\\\frac{2}{3}+5x=0\end{array}\right.\)

\(\Rightarrow x=\pm\frac{2}{15}\)

d)\(x^2-x+\frac{1}{4}=0\)

\(\Rightarrow\frac{4x^2}{4}-\frac{4x}{4}+\frac{1}{4}=0\)

\(\Rightarrow\frac{4x^2-4x+1}{4}=0\)

\(\Rightarrow4x^2-4x+1=0\)

\(\Rightarrow\left(2x-1\right)^2=0\)

\(\Rightarrow x=\frac{1}{2}\)

 

 

26 tháng 8 2016

a)17*91,5+170*0,85

 =17*91,5+17*10*0,85

=17*91,5+17*8,5

=17*(91,5+8,5)

=17*100

=1700

b)20162-162

=(2016+16)(2016-16)

=2032*2000

=4064000

c)x(x-1)-y(1-x)

=x(x-1)+y(x-1)

=(x-1)(x+y)

Thay x=2001 và y=2999 đc: 

=(2001-1)(2001+2999)

=2000*5000

=10 000 000

 

8 tháng 3 2019

\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)

\(\frac{x^2}{a^2+b^2+c^2}-\frac{x^2}{a^2}+\frac{y^2}{a^2+b^2+c^2}-\frac{y^2}{b^2}\)\(+\frac{z^2}{a^2+b^2+c^2}-\frac{z^2}{c^2}=0\)

\(x^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)\)\(+y^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)+z^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)\)\(=0\)

Vì \(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\ne0,\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\ne0\)\(,\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\ne0\) và \(a,b,c\ne0\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=0\\y^2=0\\z^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\\z=0\end{matrix}\right.\)\(\Rightarrow T=0\)

21 tháng 12 2016

mơn em iu nhìu nhắm nak.

21 tháng 12 2016

shit ~ pate tăng động -_-

14 tháng 2 2017

Theo bài ra , ta có : 

\(2x^2+2y^2+2x+2y+2xy=0\)

\(\Rightarrow\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y+1=0\end{cases}\Leftrightarrow x=y=-1}\)

Thay x = y = -1 vào A ta được : 

\(A=\left(x+2\right)^{2016}+\left(y+1\right)^{2017}\)

\(\Leftrightarrow A=\left(-1+2\right)^{2016}+\left(-1+1\right)^{2017}=1^{2016}+0=1\)

Vậy A=1 

Chúc bạn học tốt =)) 

14 tháng 2 2017

2x2 + 2y2 + 2x + 2y + 2xy = 0

<=> (x+y)2 + (x+1)2 +(y+1)2 = 0

<=> \(\left\{\begin{matrix}\left(x+y\right)^2=0\\\left(x+1\right)^2=0\\\left(y+1\right)^2=0\end{matrix}\right.\) <=> x = y = -1

thay x = y = -1 vào A ta được

(-1 + 2)2016 + (-1 + 1)2017 = 12016 = 1

chúc may mắn!!