Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x+3\right)^2+\left(3x-2\right)^4=0\)
vì \(\left(2x+3\right)^2\ge0;\left(3x-2\right)^4\ge0\)
nên\(\Rightarrow\hept{\begin{cases}\left(2x+3\right)^2=0\\\left(3x-2\right)^4=0\end{cases}\Rightarrow\hept{\begin{cases}2x+3=0\\3x-2=0\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{3}{2}\\x=\frac{2}{3}\end{cases}}\)
a.
\(\sqrt{2x+3}=1\)
\(2x+3=1\)
\(2x=1-3\)
\(2x=-2\)
\(x=-\frac{2}{2}\)
\(x=-1\)
b.
\(\left(3x-1\right)^2-25=0\)
\(\left(3x-1\right)^2=25\)
\(\left(3x-1\right)^2=\left(\pm5\right)^2\)
\(3x-1=\pm5\)
TH1:
\(3x-1=5\)
\(3x=5+1\)
\(3x=6\)
\(x=\frac{6}{3}\)
\(x=2\)
TH2:
\(3x-1=-5\)
\(3x=-5+1\)
\(3x=-4\)
\(x=-\frac{4}{3}\)
Vậy \(x=2\) hoặc \(x=-\frac{4}{3}\)
c.
\(\left(2x+4\right)\left(x^2+1\right)\left(x-2\right)=0\)
TH1:
\(2x+4=0\)
\(2x=-4\)
\(x=-\frac{4}{2}\)
\(x=-2\)
TH2:
\(x^2+1=0\)
\(x^2=-1\)
mà \(x^2\ge0\) với mọi x
=> loại
TH3:
\(x-2=0\)
\(x=2\)
Vậy \(x=2\) hoặc \(x=-2\)
\(a.\)\(=>2x+3=1\)\(=>2x=-2\)\(=>x=-1\)
\(b.\)\(=>\left(3x-1\right)^2=25\)\(=>\left(3x-1\right)^2=5^2=>3x-1=5=>3x=6=>x=2\)
\(c.\)\(=>2x+4=0\)hoac \(x^2+1=0\)hoac \(x-2=0\)
=> * 2x=4 => x= 2
* x^2=-1=> x=-1
* x = 2
\(=>x\in\left(2;-1\right)\)
Ta có :
\(\left(2x^2-3x+1\right)-\left(2x^2-3x+4\right)=0\)
\(\Leftrightarrow2x^2-3x+1-2x^2+3x-4=0\)
\(\Leftrightarrow-3=0\left(ktm\right)\)
\(\Leftrightarrow x\in\varnothing\)
\(\dfrac{1}{2}-3x+\left|x-1\right|=0\\ \Rightarrow3x+\left|x-1\right|=\dfrac{1}{2}-0\\ \Rightarrow3x+\left|x-1\right|=\dfrac{1}{2}\\ \Rightarrow\left|x-1\right|=\dfrac{1}{2}-3x\\ \Rightarrow\left[{}\begin{matrix}x-1=\dfrac{1}{2}-3x\\x-1=-\dfrac{1}{2}+3x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x+3x=\dfrac{1}{2}+1\\x-3x=-\dfrac{1}{2}+1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}4x=\dfrac{3}{2}\\2x=\dfrac{1}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{8}\\x=\dfrac{1}{4}\end{matrix}\right.\)
__
\(\dfrac{1}{2}\left|2x-1\right|+\left|2x-1\right|=x+1\\ \Rightarrow\left|2x-1\right|\cdot\left(\dfrac{1}{2}+1\right)=x+1\\ \Rightarrow\left|2x-1\right|\cdot\dfrac{3}{2}=x+1\\ \Rightarrow\left|2x-1\right|=x+1:\dfrac{3}{2}\\ \Rightarrow\left|2x-1\right|=x+\dfrac{2}{3}\\ \Rightarrow\left[{}\begin{matrix}2x-1=x+\dfrac{2}{3}\\2x-1=-x-\dfrac{2}{3}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x-x=\dfrac{2}{3}+1\\2x+x=-\dfrac{2}{3}+1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\3x=\dfrac{1}{3}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{1}{9}\end{matrix}\right.\)
Bài 1:
a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(3-2x\right)^2=\left(x-2\right)^2\\x< =\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(2x-3-x+2\right)\left(2x-3+x-2\right)=0\\x< =\dfrac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(3x-5\right)=0\\x< =\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow x=1\)
b: \(\left|x\right|< 3\)
nên -3<x<3
c: \(\left|x\right|\ge5\)
nên \(\left[{}\begin{matrix}x\ge5\\x\le-5\end{matrix}\right.\)
Bài 2:
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=7\end{matrix}\right.\)
a,Vì: \(\left(x-1\right)^2\ge0\forall x\)
\(\left(2y-5\right)^4\ge0\forall y\)
\(\Rightarrow\left(x-1\right)^2+\left(2y-5\right)^2\ge0\forall x,y\)
Dấu = xảy ra khi: \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(2y-5\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{5}{2}\end{cases}}}\)
=.= hok tốt!!
b, Vì: \(\left(2x+3\right)^2\ge0\forall x\)
\(\left(x+2y-3\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(2x+3\right)^2+\left(x+2y-3\right)^2\ge0\forall x,y\)
Mà: \(\left(2x+3\right)^2+\left(x+2y-3\right)^2< 0\)
=> Ko có giá trị của x , y thỏa mãn
=.= hok tốt!!
\(2x^2-x=0\\ \Rightarrow x\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)
b.
\(\dfrac{2x-1}{x+3}< 0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-1>0\\x+3< 0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-1< 0\\x+3>0\end{matrix}\right.\end{matrix}\right.\)
tự giải tiếp
Thanks