K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2017

\(2x^2-x=0\\ \Rightarrow x\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)

b.

\(\dfrac{2x-1}{x+3}< 0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-1>0\\x+3< 0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-1< 0\\x+3>0\end{matrix}\right.\end{matrix}\right.\)

tự giải tiếp

26 tháng 12 2017

Thanks

24 tháng 9 2018

a,Vì: \(\left(x-1\right)^2\ge0\forall x\)

\(\left(2y-5\right)^4\ge0\forall y\)

\(\Rightarrow\left(x-1\right)^2+\left(2y-5\right)^2\ge0\forall x,y\)

Dấu = xảy ra khi: \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(2y-5\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{5}{2}\end{cases}}}\)

=.= hok tốt!!

24 tháng 9 2018

b, Vì: \(\left(2x+3\right)^2\ge0\forall x\)

\(\left(x+2y-3\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(2x+3\right)^2+\left(x+2y-3\right)^2\ge0\forall x,y\)

Mà: \(\left(2x+3\right)^2+\left(x+2y-3\right)^2< 0\)

=> Ko có giá trị của x , y thỏa mãn

=.= hok tốt!!

Bài 1:

a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(3-2x\right)^2=\left(x-2\right)^2\\x< =\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(2x-3-x+2\right)\left(2x-3+x-2\right)=0\\x< =\dfrac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(3x-5\right)=0\\x< =\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow x=1\)

b: \(\left|x\right|< 3\)

nên -3<x<3

c: \(\left|x\right|\ge5\)

nên \(\left[{}\begin{matrix}x\ge5\\x\le-5\end{matrix}\right.\)

Bài 2: 

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=7\end{matrix}\right.\)

a) ko có a, b thỏa mãn

b) Giá trị lớn nhất của A = \(\frac{7}{6}\)

c) 16

d)  x = \(\frac{14}{3}\)

e) x=-1

g) n= 7

h) 

j) x=1

k) n=11

 

26 tháng 9 2017
toán lớp 7 mà đã học bpt hướng dẫn * tích lớn hơn 0 nên 2 nhân tử cùng dấu ( cùng + or cùng -) * <) thì trái dấu 1+;1-
26 tháng 9 2017

nếu >0 thì hai nhân tử cùng dấu

<0 thì trái dấu

12 tháng 6 2017

\(\left(2x+3\right)^2+\left(3x-2\right)^4=0\)

vì \(\left(2x+3\right)^2\ge0;\left(3x-2\right)^4\ge0\)

nên\(\Rightarrow\hept{\begin{cases}\left(2x+3\right)^2=0\\\left(3x-2\right)^4=0\end{cases}\Rightarrow\hept{\begin{cases}2x+3=0\\3x-2=0\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=-\frac{3}{2}\\x=\frac{2}{3}\end{cases}}\)

12 tháng 6 2017

Bạn làm như trên \(\uparrow\)sau đó thì kết luận :

Vậy không có giá trị x nào thỏa mản (2x + 3)2 + (3x - 2)4 = 0 .

29 tháng 8 2015

Tìm x biết :a) ( 2x - 3 ).( x +1 ) > 0b) ( x + 5 ).(x-7) < 0c) | 2x - 3 | + 8 = 10d) ( 2x + 5 ) . | x -8 | . ( x2 + 1 ) = 0