K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2018

a) |  2x - 5 | + 3x = 4 

<=> | 2x - 5 | = 4 - 3x   ĐK : \(x\le\frac{4}{3}\)

<=> \(\orbr{\begin{cases}2x-5=4-3x\\2x-5=3x-4\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=9\\-x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{9}{5}\left(ko\text{ thõa mãn đktc}\right)\\x=-1\left(\text{ thõa mãn đktc}\right)\end{cases}}}\)

Vậy x = -1

20 tháng 6 2019

a)/x-2/+/x-5/=3
TH1:   

x-2+x-5=3
x+x-2-5=3
     2x-7=3
        2x=3+7
        2x=10
          x=10:2
          x=5
TH2

x-2+x-5= -3
x+x-2-5=-3
     2x-7=-3
        2x=-3+7
        2x=4
          x=4:2
          x=2
Vậy x\(\in\){5;2}

21 tháng 7 2019

a) \(\left|2x-3\right|=x+1\)

\(\Leftrightarrow\orbr{\begin{cases}2x-3=x+1\\2x-3=-x-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=\frac{2}{3}\end{cases}}\)

21 tháng 7 2019

b) \(\left|3x-10\right|-x=5\Leftrightarrow\left|3x-10\right|=5+x\)

Giải như câu a)

c) Câu c) thì lập bảng xét dấu

 \(-1\)                                                                      \(1\)
\(x-1\) - |                                             -                                  0            +
\(x+1\)  - 0                                    +                                            |           +

Xét tg khoảng gt nhé

19 tháng 4 2019

\(B\left(x\right)=x^5+3x^3+x=x\left(x^4+3x^2+1\right)=x\left(x^4+x^2+x^2+1+x^2\right)=x\left[x^2\left(x^2+1\right)+x^2+1+x^2\right]\)

\(=x\left[\left(x^2+1\right)\left(x^2+1\right)+x^2\right]=x\left[\left(x^2+1\right)^2+x^2\right]\)

Vì: \(x^2+1>0,x^2\ge0\)nên \(\left(x^2+1\right)^2+x^2>0\)

Vậy B(x)  có nghiệm khi x=0

20 tháng 6 2019

a) Ta có bảng bỏ dấu GTTĐ:

x  x<2   2  2<x<5 5    5<x 
|x-2|2-x0x-23x-2
|x-5|5-x35-x0x-5
Vế Trái7-2x3332x-7

+) Với x < 2 : \(7-2x=3\Leftrightarrow2x=4\Leftrightarrow x=2\)( vô lý => Loại )

+) Với x = 2 :\(3=3\)( hợp lý => Chọn )

+) Với 2 < x < 5 : \(3=3\)( hợp lý => Chọn )

+) Với x = 5 : \(3=3\)( hợp lý => Chọn )

+) Với x > 5 : \(2x-7=3\Leftrightarrow2x=10\Leftrightarrow x=5\)( vô lý => Loại )

Vậy \(2\le x\le5.\)

Mình chỉ làm phần a) thôi nhé. 5 phần còn lại bạn làm tương tự nhé !



 

20 tháng 6 2019

Nhóc anh chỉ làm 1 phần hướng dẫn nhé các phần khác em nhìn và làm theo.

a) \(|x-2|+|x-5|=3\left(1\right)\)

Ta có: \(x-2=0\Leftrightarrow x=2\)

               \(x-5=0\Leftrightarrow x=5\)

Lập bảng xét dấu:

x-2 x-5 2 5 0 0 - - - + + +

+) Với \(x< 2\Rightarrow\hept{\begin{cases}x-2< 0\\x-5< 0\end{cases}\Rightarrow\hept{\begin{cases}|x-2|=2-x\\|x-5|=5-x\end{cases}}\left(2\right)}\)

Thay (2) vào (1) ta được :

\(\left(2-x\right)+\left(5-x\right)=3\)

\(7-2x=3\)

\(2x=4\)

\(x=2\)( chọn )

+) Với \(2\le x\le5\Rightarrow\hept{\begin{cases}x-2>0\\x-5< 0\end{cases}\Rightarrow\hept{\begin{cases}|x-2|=x-2\\|x-5|=5-x\end{cases}}}\left(3\right)\)

Thay (3) vào (1) ta được :

\(\left(x-2\right)+\left(5-x\right)=3\)

\(3=3\)( luôn đúng chọn )

+) Với \(x>5\Rightarrow\hept{\begin{cases}x-2>0\\x-5>0\end{cases}}\Rightarrow\hept{\begin{cases}|x-2|=x-2\\|x-5|=x-5\end{cases}\left(4\right)}\)

Thay (4) vào (1) ta được :

\(\left(x-2\right)+\left(x-5\right)=3\)

\(2x-7=3\)

\(2x=10\)

\(x=5\)( loại )

Vậy \(2\le x\le5\)

28 tháng 9 2017

Dễ thế mà không làm được