Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 2x-3>5x+10
=>-3x>13
hay x<-13/3
b: \(2x^2-3x>x+7x\)
\(\Leftrightarrow2x^2-10x>0\)
=>2x(x-5)>0
=>x>5 hoặc x<0
c: (x-1)(x+3)<0
=>x+3>0 và x-1<0
=>-3<x<1
/5x-4/=/x+2/
\(\orbr{\begin{cases}5x-4=x+2\\5x-4=-x+2\end{cases}}suyra\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{2}\end{cases}}\)
vậy x=3/2 hoặc x=1/2
\(Bài.44:\\ a,3x-7=0\\ \Leftrightarrow3x=7\\ \Leftrightarrow x=\dfrac{7}{3}\\ b.2x^2+9=0\\ \Leftrightarrow x^2=-\dfrac{9}{2}\left(vô.lí\right)\\ \Rightarrow Không.có.x.thoả.mãn\)
43:
a: \(A=2x\left(x^2-2x-3\right)-6x^2+5x-1+9x^2+3x+3\)
\(=2x^3-4x^2-6x+3x^2+8x+2\)
\(=2x^3-x^2+2x+2\)
b: \(\dfrac{A}{2x-1}=\dfrac{x^2\left(2x-1\right)+2x-1+3}{2x-1}=x^2+1+\dfrac{3}{2x-1}\)
Thương là x^2+1
Dư là 3
c: A chia hết cho 2x-1
=>3 chia hết cho 2x-1
=>2x-1 thuộc {1;-1;3;-3}
=>x thuộc {1;0;2;-1}
a: \(A\left(x\right)+B\left(x\right)\)
\(=-2x^3+11x^2-5x-\dfrac{1}{5}+2x^3-3x^2-7x+\dfrac{1}{5}\)
\(=8x^2-12x\)
b: C(x)=A(x)-B(x)
\(=-2x^3+11x^2-5x-\dfrac{1}{5}-2x^3+3x^2+7x-\dfrac{1}{5}\)
\(=-4x^3+14x^2+2x-\dfrac{2}{5}\)
a) |x - 5| - 2x = 3
| x - 5| = 3 + 2x
=> x - 5 = 3 + 2x hoặc x - 5 = -3 - 2x
=> -5 - 3 = 2x - x -5 + 3 = -2x - x
=> x = -8 -2 = -3x
=> x = 2/3
b) |2x - 1| + 3x = 1
|2x - 1| = 1 - 3x
=> 2x - 1 = 1 - 3x hoặc 2x - 1 = -1 + 3x
=> -1 - 1 = -3x - 2x -1 + 1 = 3x - 2x
=> -2 = -5x 0 = x
=> x = 2/5
c) | x - 5| = 3x - 2
=> x - 5 = 3x - 2 hoặc x - 5 = -3x + 2
=> -5 + 2 = 3x - x -5 - 2 = -3x - x
=> -3 = 2x -7 = -4x
=> x = -3/2 x = 7/4
d) |9 - 7x| = 5x - 3
=> 9 - 7x = 5x - 3 hoặc 9 - 7x = -5x + 3
=> 9 + 3 = 5x + 7x 9 - 3 = -5x + 7x
=> 12 = 12x 6 = 2x
=> x = 1 x = 3
|5\(x\) - 4| = |\(x+2\)|
\(\left[{}\begin{matrix}5x-4=x+2\\5x-4=-x-2\end{matrix}\right.\)
\(\left[{}\begin{matrix}4x=6\\6x=2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
vậy \(x\in\) { \(\dfrac{1}{3};\dfrac{3}{2}\)}
|2\(x\) - 3| - |3\(x\) + 2| = 0
|2\(x\) - 3| = | 3\(x\) + 2|
\(\left[{}\begin{matrix}2x-3=3x+2\\2x-3=-3x-2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-5\\x=\dfrac{1}{5}\end{matrix}\right.\)
vậy \(x\in\){ -5; \(\dfrac{1}{5}\)}
a) \(2x-3>5x+10\) \(\Leftrightarrow\) \(2x-5x>10 +3\Leftrightarrow-3x>13\Leftrightarrow x< \dfrac{13}{-3}\) vậy \(x< \dfrac{13}{-3}\)
b) \(2x^2-3x>x+7x\) \(\Leftrightarrow\) \(2x^2-3x-x-7x>0\)
\(\Leftrightarrow\) \(2x^2-11x>0\) \(\Leftrightarrow\) \(x\left(2x-11\right)>0\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x>0\\2x-11>0\end{matrix}\right.\)\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x>0\\x>\dfrac{11}{2}\end{matrix}\right.\)
\(\Rightarrow\) \(x>\dfrac{11}{2}\) vậy \(x>\dfrac{11}{2}\)
c) \(\left(x-1\right)\left(x+3\right)< 0\) \(\Leftrightarrow\) \(x^2+3x-x-3< 0\)
\(\Leftrightarrow\) \(x^2+2x-3>0\) \(\Leftrightarrow\) \(x^2-x+3x-3>0\)
\(\Leftrightarrow\) \(x\left(x-1\right)+3\left(x-1\right)\) \(\Leftrightarrow\) \(\left(x+3\right)\left(x-1\right)\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x-1>0\\x+3>0\end{matrix}\right.\)\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x>1\\x>-3\end{matrix}\right.\) \(\Rightarrow\) \(x>1\) vậy \(x>1\)