Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. (x - 2)2 = 1
<=> (x - 2)2 = 12 = (-1)2
<=> \(\begin{cases}x-2=1\\x-2=-1\end{cases}\Leftrightarrow\begin{cases}x=3\\x=1\end{cases}\)
Vậy x \(\in\){1; 3}.
b. (2x - 1)3 = -8
<=> (2x - 1)3 = (-2)3
<=> 2x - 1 = -2
<=> 2x = -2 + 1
<=> 2x = -1
<=> x = -1/2
Vậy x = -1/2.
c. (x + 1/2)2 = 1/16
<=> (x + 1/2)2 = (1/4)2 = (-1/4)2
<=> \(\begin{cases}x+\frac{1}{2}=\frac{1}{4}\\x+\frac{1}{2}=-\frac{1}{4}\end{cases}\Leftrightarrow\begin{cases}x=-\frac{1}{4}\\x=-\frac{3}{4}\end{cases}\)
Vậy x \(\in\){-1/4; -3/4}.
d. (x - 2)3 = -27
<=> (x - 2)3 = (-3)3
<=> x - 2 = -3
<=> x = -3 + 2
<=> x = -1
Vậy x = -1.
a.\(\left(x-2\right)^2\)=1
<=> x-2=1 hoặc x-2=-1
<=> x= 3 hoặc x=1
b.\(\left(2x-1\right)^3\)=-8
\(\left(2x-1\right)^3\)=\(\left(-2\right)^3\)
2x-1=-2
2x=-1
x=-1/2
c.\(\left(x+\frac{1}{2}\right)^2\)=\(\frac{1}{16}\)
\(\left(x+\frac{1}{2}\right)^2\)=\(\left(\frac{1}{4}\right)^2\)hoặc \(\left(x+\frac{1}{2}\right)^2\)=\(\left(-\frac{1}{4}\right)^2\)
x+\(\frac{1}{2}\)=\(\frac{1}{4}\) hoặc x+\(\frac{1}{2}\)=-\(\frac{1}{4}\)
x=-\(\frac{1}{4}\)hoặc x=-\(\frac{3}{4}\)
d.\(\left(x-2\right)^3\)=-27
\(\left(x-2\right)^3\)=\(\left(-3\right)^3\)
x-2=-3
x=-1
\(a,\left(1-2x\right)^3=-8\)
\(\Rightarrow1-2x=-2\)
\(\Rightarrow2x=3\)
\(\Rightarrow=\frac{3}{2}\)
\(b,\left(2x-1\right)^3=-27\)
\(\Rightarrow2x-1=-3\)
\(\Rightarrow2x=-2\)
\(\Rightarrow x=-1\)
a) \(\left(2x-1\right)^3=-27\)
\(\Leftrightarrow\left(2x-1\right)^3=\left(-3\right)^3\)
\(\Leftrightarrow2x-1=-3\)
\(\Leftrightarrow2x=-3+1\)
\(\Leftrightarrow2x=-2\)
\(\Leftrightarrow x=-1\)
b) \(\left(x-3\right)^{10}=\left(x-3\right)^{30}\)
\(\Leftrightarrow\left(x-3\right)^{10}=\left[\left(x-3\right)^{10}\right]^3\)
\(\Leftrightarrow x-3=\left(x-3\right)^3\)
giải ra x = 4 ; x = 2; x = 3
\(\text{a) }\left(2x-1\right)^3=-27\\ \Leftrightarrow\left(2x-1\right)^3=-3^3\\ \Leftrightarrow2x-1=-3\\ \Leftrightarrow2x=-2\\ \Leftrightarrow x=-1\\ \text{Vậy }x=-1\\ \)
\(\text{b) }\left(x-3\right)^{10}=\left(x-3\right)^{30}\\ \Leftrightarrow\left(x-3\right)^{10}-\left(x-3\right)^{30}=0\\ \Leftrightarrow\left(x-3\right)^{10}\left[1-\left(x-3\right)^{20}\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-3\right)^{10}=0\\1-\left(x-3\right)^{20}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-3=0\\\left(x-3\right)^{20}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x-3=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\\ \text{Vậy }x=3\text{ hoặc }x=4\)