Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1:
a) \(\frac{x+4}{x+3}=\frac{x+9}{x+4}\)
-->(x+4)(x+4)=(x+3)(x+9)
\(x^2\)+4x+4x+16=\(x^2\)+9x+3x+27
\(x^2-x^2\)+4x+4x-9x-3x= - 16+27
- 4x=11
x=\(\frac{-4}{11}\)
b) \(\frac{x-5}{x+3}=\frac{x-4}{x+6}\)
-->(x-5)(x+6)=(x+3)(x-4)
\(x^2\)+6x-5x-30=\(x^2\)-4x+3x-12
\(x^2-x^2\)+6x-5x+4x-3x=30-12
2x=18
x=9
c)\(\frac{3x-1}{3x}=\frac{2x-1}{2x+1}\)
--> (3x-1)(2x+1)=3x.(2x-1)
\(6x^2\)+3x-2x-1=\(6x^2\)-3x
\(6x^2-6x^2\)+3x-2x+3x=1
4x=1
x=\(\frac{1}{4}\)
a) \(2x^2-3x=0\)
\(\Leftrightarrow x\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)
b) \(x^3-2x=0\)
\(\Leftrightarrow x\left(x^2-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{2}\end{matrix}\right.\)
c) \(x^6+1=0\)
\(\Leftrightarrow x^6=-1\)
Ta có : \(x^6\ge0\) với mọi x
Mà : -1 < 0
=> Vô nghiệm
d) \(x^3+2x=0\)
\(\Leftrightarrow x\left(x^2+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=-2\left(loại\right)\end{matrix}\right.\)
e) \(x^5+8x^2=0\)
\(\Leftrightarrow x^2\left(x^3+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x^3+8=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^3=-8\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
f) \(x^2\left(x^2-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x^2-9=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm3\end{matrix}\right.\)
g) \(\left(x+\dfrac{1}{2}\right)\left(x^2-\dfrac{4}{5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\x^2-\dfrac{4}{5}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x^2=\dfrac{4}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=\sqrt{\dfrac{4}{5}}\end{matrix}\right.\)
\(a,\left(-3\text{x}+3\right)\left(-2\text{x}-2\right)\le\)\(0\)
\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}-3\text{x}+3\le0\Rightarrow x\ge1\\-2\text{x}-2\ge0\Rightarrow x\le-2\end{cases}}\\\hept{\begin{cases}-3x+3\ge0\Rightarrow x\le1\\-2\text{x}-2\le0\Rightarrow x\ge-2\end{cases}}\end{cases}\Rightarrow\orbr{\begin{cases}-2\ge x\ge1\left(lo\text{ại}\right)\\1\ge x\ge-2\left(ch\text{ọn}\right)\end{cases}}}\)
a) Do: (-3x + 3)(-2x - 2) bé hơn hoặc bằng 0 nên (-3x + 3) và (-2x - 2) trái dấu.
Mà: -3x + 3 > -2x - 2
=> -3x + 3 lớn hơn hoặc bằng 0 và -2x - 2 bé hơn hoặc bằng 0
=> x bé hơn hoặc bằng 1 và x lớn hơn hoặc bằng -2
b) Do: (1/2 - 2x)(1/2 + 3x) lớn hơn hoặc bằng 0 nên (1/2 - 2x) và (1/2 + 3x) cùng dấu.
TH1: Khi (1/2 - 2x) và (1/2 + 3x) lớn hơn hoặc bằng 0
=> x lớn hơn hoặc bằng 1/4 và x lớn hơn hoặc bằng -1/6
=> x lớn hơn hoặc bằng -1/6
Th2: (1/2 - 2x) và (1/2 + 3x) cùng bé hơn hoặc bằng 0
=> x bé hơn hoặc bằng 1/4 và x bé hơn hoặc bằng -1/6
=> x bé hơn hoặc bằng 1/4
Làm tiếp nè :
2) / 2x + 4/ = 2x - 5
Do : / 2x + 4 / ≥ 0 ∀x
⇒ 2x - 5 ≥ 0
⇔ x ≥ \(\dfrac{5}{2}\)
Bình phương hai vế của phương trình , ta có :
( 2x + 4)2 = ( 2x - 5)2
⇔ ( 2x + 4)2 - ( 2x - 5)2 = 0
⇔ ( 2x + 4 - 2x + 5)( 2x + 4 + 2x - 5) = 0
⇔ 9( 4x - 1) = 0
⇔ x = \(\dfrac{1}{4}\) ( KTM)
Vậy , phương trình vô nghiệm .
3) / x + 3/ = 3x - 1
Do : / x + 3 / ≥ 0 ∀x
⇒ 3x - 1 ≥ 0
⇔ x ≥ \(\dfrac{1}{3}\)
Bình phương hai vế của phương trình , ta có :
( x + 3)2 = ( 3x - 1)2
⇔ ( x + 3)2 - ( 3x - 1)2 = 0
⇔ ( x + 3 - 3x + 1)( x + 3 + 3x - 1) = 0
⇔ ( 4 - 2x)( 4x + 2) = 0
⇔ x = 2 (TM) hoặc x = \(\dfrac{-1}{2}\) ( KTM)
KL......
4) / x - 4/ + 3x = 5
⇔ / x - 4/ = 5 - 3x
Do : / x - 4/ ≥ 0 ∀x
⇒ 5 - 3x ≥ 0
⇔ x ≤ \(\dfrac{-5}{3}\)
Bình phương cả hai vế của phương trình , ta có :
( x - 4)2 = ( 5 - 3x)2
⇔ ( x - 4)2 - ( 5 - 3x)2 = 0
⇔ ( x - 4 - 5 + 3x)( x - 4 + 5 - 3x) = 0
⇔ ( 4x - 9)( 1 - 2x) = 0
⇔ x = \(\dfrac{9}{4}\) ( KTM) hoặc x = \(\dfrac{1}{2}\) ( KTM)
KL......
Làm tương tự với các phần khác nha
1)\(\left|4x\right|=3x+12\)
\(\Leftrightarrow4.\left|x\right|=3x+12\\ \Leftrightarrow4.\left|x\right|-3x=12\)
\(TH1:4x-3x=12\left(x\ge0\right)\\\Leftrightarrow x=12\left(TM\right) \)
\(TH2:4.\left(-x\right)-3x=12\left(x< 0\right)\\ \Leftrightarrow-7x=12\\ \Leftrightarrow x=-\dfrac{12}{7}\left(TM\right)\)
Vậy tập nghiệm của PT: \(S=\left\{12;-\dfrac{12}{7}\right\}\)
a) \(4:\left(x-1\right)=\left(x-1\right):9\)
\(\frac{4}{x-1}=\frac{x-1}{9}\)
\(\left(x-1\right)^2=36\)
\(\left(x-1\right)^2=6^2\)
\(\Rightarrow x-1=6\)
\(\Rightarrow x=7\)
vậy \(x=7\)
c) \(3\frac{1}{2}:x\frac{1}{2}=5\frac{1}{3}:\frac{1}{2}.1\frac{1}{5}\)
\(\frac{7}{2}:\frac{1}{2}x=\frac{16}{3}:\frac{1}{2}.\frac{6}{5}\)
\(\frac{7}{2}:\frac{1}{2}x=\frac{64}{5}\)
\(\frac{1}{2}x=\frac{7}{2}:\frac{64}{5}\)
\(\frac{1}{2}x=\frac{35}{128}\)
\(x=\frac{35}{128}:\frac{1}{2}\)
\(x=\frac{35}{64}\)
d) \(\left|2x-3\right|=5\)
\(\Rightarrow\orbr{\begin{cases}2x-3=5\\2x-3=-5\end{cases}}\Rightarrow\orbr{\begin{cases}2x=8\\2x=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
vậy \(\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
f) \(\left(2x-\frac{1}{2}\right)^2=\left(1-3x\right)^2\)
\(\Rightarrow2x-\frac{1}{2}=1-3x\)
\(\Rightarrow2x+3x=1+\frac{1}{2}\)
\(\Rightarrow5x=\frac{3}{2}\)
\(\Rightarrow x=\frac{3}{10}\)
\(\left(3-\frac{1}{2}:x\right)^2=14\)
\(\left(3-\frac{1}{2x}\right)^2=14\)
\(\frac{1}{4x^2}-2.\frac{1}{2x}.3+9=14\)
\(\frac{1}{4x^2}-\frac{3}{x}=5\)
\(\left(\frac{1}{4x}-3\right):x=5\)
a) x3 = -27
<=> -33 = -27
=> x = -3
b) (2x - 1)3 = 8
<=> 8x3 - 12x2 + 6x - 1 = 8
<=> 8x3 - 12x2 + 6x - 1 - 8 = 0
<=> (2x - 3)(4x2 + 3) = 0
<=> 2x - 3 = 0 hoặc 4x2 + 3 = 0
2x = 0 + 3
2x = 3
x = 3/2
=> x = 3/2
c) x3 = x5
<=> x3 - x5 = 0
<=> x3(1 - x2) = 0
<=> x = 0; 1; -1
=> x = 0; 1; -1
d) (x - 2)2 = 16
<=> (x - 2)2 = 42
<=> x - 2 = 4 hoặc x - 2 = -4
x = 4 + 2 x = -4 + 2
x = 6 x = -2
=> x = 6; -2
g) (2x - 3)2 = 9
<=> (2x - 3)2 = 32
<=> 2x - 3 = 3 hoặc 2x - 3 = -3
2x = 3 + 3 2x = -3 + 3
2x = 6 2x = 0
x = 3 x = 0
=> x = 3; 0
y) 3x3 - 4x = 0
<=> x(3x - 4) = 0
<=> x = 0 hoặc 3x - 4 = 0
3x = 0 + 4
3x = 4
x = 4/3
a )
\(x^2-x+1=0\)
( a = 1 ; b= -1 ; c = 1 )
\(\Delta=b^2-4.ac\)
\(=\left(-1\right)^2-4.1.1\)
\(=1-4\)
\(=-3< 0\)
vì \(\Delta< 0\) nên phương trình vô nghiệm
=> đa thức ko có nghiệm
b ) đặc t = x2 ( \(t\ge0\) )
ta có : \(t^2+2t+1=0\)
( a = 1 ; b= 2 ; b' = 1 ; c =1 )
\(\Delta'=b'^2-ac\)
\(=1^2-1.1\)
\(=1-1=0\)
phương trình có nghiệp kép
\(t_1=t_2=-\frac{b'}{a}=-\frac{1}{1}=-1\) ( loại )
vì \(t_1=t_2=-1< 0\)
nên phương trình vô nghiệm
Vay : đa thức ko có nghiệm
2/ Đặt \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)
Ta có \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)
=> \(f\left(x\right)=2x^2-3x+5+3x^2+3x-6\)
=> \(f\left(x\right)=5x^2-1\)
Khi \(f\left(x\right)=0\)
=> \(5x^2-1=0\)
=> \(5x^2=1\)
=> \(x^2=\frac{1}{5}\)
=> \(x=\sqrt{\frac{1}{5}}\)
Vậy f (x) có 1 nghiệm là \(x=\sqrt{\frac{1}{5}}\)
2: =>2x-1/4=5/6-1/2x
=>5/2x=5/6+1/4=13/12
=>x=13/30
3: =>3x-5/6=2/3-1/2x
=>3,5x=2/3+5/6=4/6+5/6=9/6=3,2
hay x=32/35
\(2\left(3x-2\right)-3\left(x-2\right)=-1\)
\(6x-4-3x+6=-1\)
\(3x+2=-1\)
\(3x=-1-2\)
\(3x=-3\)
\(x=-1\)
\(2\left(3-3x^2\right):3x\left(2x-1\right)=9\)
\(6-6x^2:6x^2-3x=9\)
\(6-x^2-3x=9\)
\(-x^2-3x+6=9\)
\(-x^2-3x=5\)
\(-x\left(x+3\right)=5\)
\(x=-5;x=2\)