Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
em gửi bài qua fb thầy chữa cho nhé, tìm fb của thầy bằng sđt: 0975705122 nhé.
a: \(\Leftrightarrow x\left(a^2+2\right)=2a^4-2\)
\(\Leftrightarrow x=\dfrac{2\left(a^4-1\right)}{a^2+2}\)
b: \(a^2x+3ax+9=a^2\)
\(\Leftrightarrow x\left(a^2+3a\right)=a^2-9\)(1)
Trường hợp 1: a=-3
=>Pt (1) có vô số nghiệm
Trường hợp 2: a=0
=>Pt (1) vô nghiệm
TRường hợp 3: \(a\notin\left\{-3;0\right\}\)
=>Pt(1) có nghiệm duy nhất là \(x=\dfrac{\left(a-3\right)\left(a+3\right)}{a\left(a+3\right)}=\dfrac{a-3}{a}\)
c) Cách 1:
x^4+3x^3-x^2+ax+b x^2+2x-3 x^2+x x^4+2x^3-3x^2 - x^3+2x^2+ax+b x^3+2x^2-3x - (a+3)x+b
Để \(P\left(x\right)⋮Q\left(x\right)\)
\(\Leftrightarrow\left(a+3\right)x+b=0\)
\(\Leftrightarrow\hept{\begin{cases}a+3=0\\b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=0\end{cases}}\)
Vậy a=-3 và b=0 để \(P\left(x\right)⋮Q\left(x\right)\)
a)
2n^2-n+2 2n+1 n-1 2x^2+n - -2n+2 -2n-1 - 3
Để \(2n^2-n+2⋮2n+1\)
\(\Leftrightarrow3⋮2n+1\)
\(\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow n\in\left\{0;1;-2;-1\right\}\)
Vậy \(n\in\left\{0;1;-2;-1\right\}\)để \(2n^2-n+2⋮2n+1\)
x^4 +ax^2+b x^2+3x-10 x^2 x^4+3x^3-10x^2 - -3x^3+(a+10)x^2+b -3x -3x^3-9x^2+10x - (a+19)x^2-10x+b +(a+19) (a+19)x^2+(3a+57)x-(10a+190) - (-3a-67)x+(b+10a+190)
Để \(x^4+ax^2+b\)chia het cho \(x^2+3x-10\)
\(\Leftrightarrow\left(-3a+67\right)+\left(b+10a+190\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}-3a+67=0\\b+10a+190=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=\frac{-67}{3}\\b=\frac{100}{3}\end{cases}}\)
Vậy...
( chả biết đúng ko )
a 2 x + x = 2 a 4 - 2 ⇔ x a 2 + 1 = 2 a 4 - 1