\(8^x.16^{-2x}=4^5\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2015

\(8^x.16^{-2x}=4^5=>\frac{8^x.1}{16^{2x}}=4^5=>\frac{8^x}{256^x}=4^5=>\frac{1}{32^x}=4^5=>4^5.32^x=1=>2^{10}.2^{5x}=1\)

\(2^{10+5x}=1=>10+5x=0=>5x=-10=>x=-2\)

5 tháng 6 2019

1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)

\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu

\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)

\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)

Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)

5 tháng 6 2019

Bài 1b) có thể giải gọn hơn nhuư thế này

5 tháng 9 2019

\(8^x.16^{-2x}=4^5\)

\(\Leftrightarrow8^x.8^{-2x}.2^{-2x}=4^5\)

\(\Leftrightarrow8^{x+\left(-2x\right)}.2^{-2x}=\left(2^2\right)^5\)

\(\Leftrightarrow8^{-x}=2^{10}:2^{-2x}\)

\(\Leftrightarrow8^{-x}=2^{10-\left(-2x\right)}=2^{10+2x}\)

\(\Leftrightarrow\left(2^3\right)^{-x}=2^{10+2x}\)

\(\Leftrightarrow2^{-3x}=2^{10+2x}\)

\(\Leftrightarrow-3x=10+2x\)

\(\Leftrightarrow5x=-10\)

\(\Leftrightarrow x=-2\)

Vậy : \(x=-2\)

21 tháng 7 2019

\(\frac{2^{4-x}}{16^5}=32^6\)

=> \(\frac{2^{4-x}}{\left(2^4\right)^5}=\left(2^5\right)^6\)

=> \(\frac{2^{4-x}}{2^{20}}=2^{30}\)

=> \(2^{4-x}=2^{30}.2^{20}\)

=> \(2^{4-x}=2^{50}\)

=> 4  - x = 50

=> x = 4 - 50 = -46

\(\frac{3^{2x+3}}{9^3}=9^{14}\)

=> \(\frac{3^{2x+3}}{\left(3^2\right)^3}=\left(3^2\right)^{14}\)

=> \(\frac{3^{2x+3}}{3^6}=3^{28}\)

=> \(3^{2x+3}=3^{28}.3^6\)

=> \(3^{2x+3}=3^{34}\)

=> 2x + 3 = 34

=> 2x = 34 - 3

=> 2x = 31

=> x = 31/2

26 tháng 4 2018

Câu b) tạm thời ko bít làm =.= 

Bài 1 : 

\(d)\) \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2x\)

\(\Leftrightarrow\)\(\frac{4^5.4}{3^5.3}.\frac{6^5.6}{2^5.2}=2x\)

\(\Leftrightarrow\)\(\frac{4^6}{3^6}.\frac{6^6}{2^6}=2x\)

\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{2^6.3^6}{2^6}=2x\)

\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{3^6}{1}=2x\)

\(\Leftrightarrow\)\(2^{12}=2x\)

\(\Leftrightarrow\)\(x=\frac{2^{12}}{2}\)

\(\Leftrightarrow\)\(x=2^{11}\)

\(\Leftrightarrow\)\(x=2048\)

Vậy \(x=2048\)

Chúc bạn học tốt ~ 

26 tháng 4 2018

Bài 1 : 

\(a)\) Ta có : 

\(4+\frac{x}{7+y}=\frac{4}{7}\)

\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{4}{7}-4\)

\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{-24}{7}\)

\(\Leftrightarrow\)\(\frac{x}{-24}=\frac{7+y}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{-24}=\frac{7+y}{7}=\frac{x+7+y}{-24+7}=\frac{22+7}{-17}=\frac{29}{-17}=\frac{-29}{17}\)

Do đó : 

\(\frac{x}{-24}=\frac{-29}{17}\)\(\Rightarrow\)\(x=\frac{-29}{17}.\left(-24\right)=\frac{696}{17}\)

\(\frac{7+y}{7}=\frac{-29}{17}\)\(\Rightarrow\)\(y=\frac{-29}{17}.7-7=\frac{-322}{17}\)

Vậy \(x=\frac{696}{17}\) và \(y=\frac{-322}{17}\)

Chúc bạn học tốt ~ 

10 tháng 7 2019

chữ y đằng sau số 9 bỏ chỉ có ssó 9 thôi

10 tháng 7 2019

a)Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-1\right|+\left|3+x\right|=\left|1-x\right|+\left|3+x\right|\ge\left|1-x+3+x\right|=4\)

\(\Rightarrow VT\ge VP."="\Leftrightarrow-3\le x\le1\)

b) \(\hept{\begin{cases}\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\ge4\\\frac{8}{2\left(y-5\right)^2+2}\le4\end{cases}}\Leftrightarrow VT\ge VP."="\Leftrightarrow\hept{\begin{cases}-\frac{3}{2}\le x\le\frac{1}{2}\\y=5\end{cases}}\)

c Tương tự b

2) \(\frac{1}{x}+\frac{1}{y}=5\Leftrightarrow x+y-5xy=0\Leftrightarrow5x+5y-25xy=0\Leftrightarrow5x\left(1-5y\right)-\left(1-5y\right)=-1\)

\(\Leftrightarrow\left(5x-1\right)\left(1-5y\right)=-1\)

Xét ước

19 tháng 3 2020

a, Ta có : \(\left(2x-1\right)^4=16\)

=> \(\left(\left(2x-1\right)^2\right)^2-\left(2^2\right)^2=0\)

=> \(\left(\left(2x-1\right)^2-2^2\right)\left(\left(2x-1\right)^2+2^2\right)=0\)

=> \(\left(2x-1-2\right)\left(2x-1+2\right)\left(\left(2x-1\right)^2+2^2\right)=0\)

\(\left(2x-1\right)^2+2^2>0\)

=> \(\left(2x-3\right)\left(2x+1\right)=0\)

=> \(\left[{}\begin{matrix}x=\frac{3}{2}\\x=-\frac{1}{2}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là \(S=\left\{\frac{3}{2};-\frac{1}{2}\right\}\)

b, Ta có : \(\left(2x+1\right)^4=\left(2x+1\right)^6\)

=> \(\left(2x+1\right)^6-\left(2x+1\right)^4=0\)

=> \(\left(2x+1\right)^4\left(\left(2x+1\right)^2-1\right)=0\)

=> \(\left(2x+1\right)^4\left(2x+1-1\right)\left(2x+1+1\right)=0\)

=> \(2x\left(2x+1\right)^4\left(2x+2\right)=0\)

=> \(\left[{}\begin{matrix}2x=0\\2x+1=0\\2x+2=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=0\\x=-\frac{1}{2}\\x=-1\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là \(S=\left\{0;-1;-\frac{1}{2}\right\}\)

c, Ta có : \(\left|\left|x+3\right|-8\right|=20\)

TH1 : \(x+3\ge0\left(x\ge-3\right)\)

=> \(\left|x+3\right|=x+3\)

=> \(\left|x-5\right|=20\)

TH1.1 : \(x-5\ge0\left(x\ge5\right)\)

=> \(\left|x-5\right|=x-5=20\)

=> \(x=25\left(TM\right)\)

TH1.2 : \(x-5< 0\left(x< 5\right)\)

=> \(\left|x-5\right|=5-x=20\)

=> \(x=-15\) ( không thỏa mãn )

TH2 : \(x+3< 0\left(x< -3\right)\)

=> \(\left|x+3\right|=-x-3\)

=> \(\left|-x-11\right|=20\)

TH1.1 : \(-x-11\ge0\left(x\le-11\right)\)

=> \(\left|-x-11\right|=-x-11=20\)

=> \(x=-31\left(TM\right)\)

TH1.2 : \(-x-11< 0\left(x>-11\right)\)

=> \(\left|-x-11\right|=x+11=20\)

=> \(x=9\) ( không thỏa mãn )

Vậy phương trình có tập nghiệm là \(S=\left\{-31;25\right\}\)

19 tháng 3 2020

a, ( 2x - 1 )4 = 16

=> 2x - 1 = 2 hoặc -2

TH1: 2x - 1 = 2

=> 2x = 2 + 1 = 3; => x = \(\frac{3}{2}\)

TH2: 2x - 1 = -2

=> 2x = -2 + 1 = -1; => x =- \(\frac{1}{2}\)

b, ( 2x + 1 )4 = ( 2x + 1 )6

=> ( 2x + 1 )4 - ( 2x + 1 )6 = 0

= ( 2x + 1 )4 - ( 2x - 1 )2 . ( 2x - 1 )4

= ( 2x + 1 )4 . [ 1 - ( 2x - 1 )2 ] = 0

Ta có ( 2x + 1 )4 và ( 2x - 1 )2 \(\ge\) 0 vì có số mũ chẵn

Ta có 2 TH

TH1: ( 2x - 1 )4 = 0

=> 2x - 1 = 0; => x = \(\frac{1}{2}\)

TH2: 1 - ( 2x - 1 )2 = 0; => ( 2x - 1 )2 = 1

=> 2x - 1 = 1; => x = 1

c, //x + 3/ - 8/ = 20

Ta có 2 TH, mỗi TH lại chia thành 2 TH nhỏ hơn

TH1: /x + 3/ - 8 = 20

=> /x + 3/ = 28

=> x + 3 = 28 hoặc -28

TH1 nhỏ: x + 3 = 28; => x = 25

TH2 nhỏ: x + 3 = -28; => x = -31

TH2: /x + 3/ - 8 = -20

=> /x + 3/ = -12; => TH này loại

=> x = 25; -31