K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2017

Ta có: \(8x\left(x-2015\right)-x+2015=0\)

\(\Rightarrow8x\left(x-2015\right)-\left(x-2015\right)=0\)

\(\Rightarrow\left(8x-1\right)\left(x-2015\right)=0\)

\(\Rightarrow\orbr{\begin{cases}8x-1=0\\x-2015=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{8}\\x=2015\end{cases}}}\)

Vậy \(x=\left\{\frac{1}{8};2015\right\}\)

6 tháng 12 2017

       8x(x - 2015) - (x - 2015) = 0

<=> (8x - 1)(x - 2015) = 0

<=> ...........  đến đây thì dễ rồi :)))) 

30 tháng 1

Ta có : \(x^2-2x-1=0 \)
\(\Leftrightarrow \)\((x-1)^2=2\)
\(\Leftrightarrow \)\(\left[\begin{array}{} x-1=\sqrt{2}\\ x-1=-\sqrt{2} \end{array} \right.\)
Đặt P = \(\dfrac{x^6-6x^5+12x^4-8x^3+2015}{x^6-8x^3-12x^2+6x+2015}\)
          =\(\dfrac{(x^6-2x^5-x^4)-(4x^5-8x^4-4x^3)+(5x^4-10x^3-5x^2)-(2x^3-4x^2-2x)+(x^2-2x-1)+2016} {(x^6-2x^5-x^4)+(2x^5-4x^4-2x^3)+(5x^4-10x^3-5x^2)+(4x^3-8x^2-4x)+(x^2-2x-1)+12x+2016}\)
         =\(\dfrac{x^4(x^2-2x-1)-4x^3(x^2-2x-1)+5x^2(x^2-2x-1)-2x(x^2-2x-1)+(x^2-2x-1)+2016} {x^4(x^2-2x-1)+2x^3(x^2-2x-1)+5x^2(x^2-2x-1)+4x(x^2-2x-1)+(x^2-2x-1)+12x+2016}\)
         =\(\dfrac{2016}{12x + 2016}\)
         =\(\dfrac{2016}{12(x+1)+2004}\)
         =\(\dfrac{168}{x+1+167}\)
         =\(\left[\begin{array}{} \dfrac{168}{\sqrt{2}+167}\\ \dfrac{168}{-\sqrt{2}+167} \end{array} \right.\)
Chú thích: Hình như mẫu là \(-6x\) chứ không phải \(6x \) bạn ạ. Hay là mình phân tích sai thì cho mình xin lỗi nhé.

26 tháng 6 2018

19 tháng 6 2018

\(x\left(x-2015\right)+\left(x-2015\right)=0\)

\(\Rightarrow\left(x+1\right)\left(x-2015\right)=0\)

\(\Rightarrow\hept{\begin{cases}x+1=0\\x-2015=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\x=2015\end{cases}}\)

19 tháng 6 2018

\(x\left(x-2015\right)+x-2015=0\)

\(x\left(x-2015\right)+\left(x-2015\right)=\left(x-2015\right)\left(x+1\right)=0\)

TH1 :\(x+1=0\)

\(x=-1\)

TH2 : \(x-2015=0\)

\(x=2015\)

Ta có / x + 2013 / + / x + 2014 / + / x + 2015 / = 0x

\(=>x+2013+x+2014+x+2015=0\)

\(=>\hept{\begin{cases}x+2013=0\\x+2014=0\\x+2015=0\end{cases}=>\hept{\begin{cases}x=-2013\\x=-2014\\x=-21015\end{cases}}}\)

31 tháng 10 2019

\(x.\left(x-2015\right)-\left(x-2015\right)=0\)

\(\left(x-1\right)\left(x-2015\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\x-2015=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=2015\end{cases}}\)

31 tháng 10 2019

\(x\cdot\left(x-2015\right)-x+2015=0\)

\(x\cdot\left(x-2015\right)-\left(x-2015\right)=0\)

\(\left(x-2015\right)\cdot\left(x-1\right)=0\)

\(\orbr{\begin{cases}x-2015=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2015\\x=1\end{cases}}}\)

29 tháng 11 2017

\(A=8x^2-4x+\frac{1}{4x^2}+2015\)

\(=\left(4x^2+\frac{1}{4x^2}\right)+\left(4x^2-4x+1\right)+2014\)

\(=\left(4x^2+\frac{1}{4x^2}\right)+\left(2x-1\right)^2+2014\)

Áp dụng bđt AM - GM ta có : \(4x^2+\frac{1}{4x^2}\ge2\sqrt{4x^2.\frac{1}{4x^2}}=2\)

\(\left(2x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(4x^2+\frac{1}{4x^2}\right)+\left(4x^2-4x+1\right)\ge2\)

\(\Rightarrow A=\left(4x^2+\frac{1}{4x^2}\right)+\left(4x^2-4x+1\right)+2014\ge2016\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}4x^2=\frac{1}{4x^2}\\\left(2x-1\right)^2=0\end{cases}}\) \(\Rightarrow x=\frac{1}{2}\)

Vậy \(A_{min}=2016\) tại \(x=\frac{1}{2}\)

2 tháng 1 2016

thay x=7

ta có:7^15-8*7^14+887^13-8*7^12+...-8*7^2+8*7-2015

f(7)=7^15-8.7^14+8.7^13-8.7^12+... 
-8.7^2+8.7-5= 
= -7^14+8.7^13-8.7^12+...-8.7^2+8.7-5= 
=7^13-8.7^12+...-8.7^2+8.7-5= 
= -7^12+...-8.7^2+8.7-5= 
=...= -7^2+8.7-5=7-5=2 
Kết quả là 2

2 tháng 1 2016

sao mà 2 câu giống nhau thế