Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a TH1 : 9 - 7x \(\ge\)0 <=> x\(\le\)\(\frac{9}{7}\)
=> | 9 - 7x | = 9 - 7x (*)
thay (*) vào biểu thức ta có :
9 - 7x = 5x - 3
<=> -7x - 5x = -3 -9
<=> - 12x = -12
<=> x = 1
TH2 : 9 - 7x < 0 <=> x > \(\frac{9}{7}\) (**)
| 9 - 7x | = - ( 9 - 7x ) = 7x - 9 (**)
thay (**) vào biểu thức ta có :
7x - 9 = 5x - 3
<=> 7x - 5x = - 3 + 9
<=> 3x = 6
<=> x = 2
b) TH1: 4x + 1 \(\ge\)0 <=> x \(\ge\)\(\frac{-1}{4}\)
=> | 4x + 1 | = 4x + 1 (*)
thay (*) vào biểu thức ta có :
8x - ( 4x + 1 ) = x + 2
<=> 8x - 4x - 1 = x + 2 ( cái chỗ - ( 4x + 1 phải đổi dấu nha bạn, là -1 x ( 4x + 1 ) nên phải đổi dấu nha )
<=> 4x - x = 2 +1
<=> 3x = 3
<=> x = 1
TH2 : 4x + 1 < 0 <=> x < \(\frac{-1}{4}\)
=> | 4x + 1 | = - ( 4x + 1 ) = - 4x - 1 (**)( cái này cũng phải đổi dấu nè bạn )
thay (**) vào biểu thức ta có :
8x -( - 4x - 1 ) = x + 2
<=> 8x + 4x + 1 = x + 2
<=> 12x - x = 2 -1
<=> 11x = 1
<=> x = \(\frac{1}{11}\)( loại vì \(\frac{1}{11}\)> \(\frac{-1}{4}\))
Dài đấy :))
a) \(\left|x-1\right|-\left(-2\right)^3=9\cdot\left(-1\right)^{100}\)
\(\Leftrightarrow\left|x-1\right|-\left(-8\right)=9\cdot1\)
\(\Leftrightarrow\left|x-1\right|+8=9\)
\(\Leftrightarrow\left|x-1\right|=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)
b) \(\frac{x-2}{-4}=\frac{-9}{x-2}\)( ĐKXĐ : \(x\ne2\))
\(\Leftrightarrow\left(x-2\right)\left(x-2\right)=-4\cdot\left(-9\right)\)
\(\Leftrightarrow\left(x-2\right)^2=36\)
\(\Leftrightarrow\left(x-2\right)^2=\left(\pm6\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=6\\x-2=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-4\end{cases}}\left(tmđk\right)\)
c) \(\frac{x-5}{3}=\frac{-12}{5-x}\)( ĐKXĐ : \(x\ne5\))
\(\Leftrightarrow\frac{x-5}{3}=\frac{-12}{-\left(x-5\right)}\)
\(\Leftrightarrow\frac{x-5}{3}=\frac{12}{x-5}\)
\(\Leftrightarrow\left(x-5\right)\left(x-5\right)=3\cdot12\)
\(\Leftrightarrow\left(x-5\right)^2=36\)
\(\Leftrightarrow\left(x-5\right)^2=\left(\pm6\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=6\\x-5=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=11\\x=-1\end{cases}}\left(tmđk\right)\)
d) \(8x-\left|4x+\frac{3}{4}\right|=x+2\)
\(\Leftrightarrow8x-x-2=\left|4x+\frac{3}{4}\right|\)
\(\Leftrightarrow7x-2=\left|4x+\frac{3}{4}\right|\)(*)
\(\left|4x+\frac{3}{4}\right|\ge0\Leftrightarrow4x+\frac{3}{4}\ge0\Leftrightarrow x\ge-\frac{3}{16}\)
Vậy ta xét hai trường hợp sau :
1. \(x\ge-\frac{3}{16}\)
(*) <=>\(7x-2=4x+\frac{3}{4}\)
\(\Leftrightarrow7x-4x=\frac{3}{4}+2\)
\(\Leftrightarrow3x=\frac{11}{4}\)
\(\Leftrightarrow x=\frac{11}{12}\)(tmđk)
2. \(x< -\frac{3}{16}\)
(*) <=> \(7x-2=-\left(4x+\frac{3}{4}\right)\)
\(\Leftrightarrow7x-2=-4x-\frac{3}{4}\)
\(\Leftrightarrow7x+4x=-\frac{3}{4}+2\)
\(\Leftrightarrow11x=\frac{5}{4}\)
\(\Leftrightarrow x=\frac{5}{44}\left(ktmđk\right)\)
Vậy x = 11/12
e) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)
\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2019}{2020}\)
\(\Leftrightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{4040}\)
\(\Leftrightarrow\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{4040}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{4040}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2019}{4040}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{4040}\)
\(\Leftrightarrow x+1=4040\)
\(\Leftrightarrow x=4039\)
a) x3-x2+x-1=0
=>(x3-x2)+(x-1)=0
=>x2(x-1)+(x-1)=0
(x-1)(x2+1)=0
Ta có \(x^2+1>0\) ( vì \(x^2\ge0\) )
=>x-1=0
x=1
Vậy x=1 là nghiệm của f(x)
b)11x3+5x2+4x+10=0
=>(10x3+10)+(x3+x2)+(4x2+4x)=0
=>10(x3+1)+x2(x+1)+4x(x+1)=0
10(x+1)(x2-x+1)+x2(x+1)+4x(x+1)=0
(x+1)[10(x2-x+1)+x2+4x]=0
(x+1)(11x2-6x+10)=0
(x+1)[(9x2-2.3x+1)+9]=0
(x+1)[(3x-1)2+2x2+9]=0
=>x+1=0
x=-1
Vậy -1 là nghiệm của y(x)
c)-17x3+8x2-3x+12=0
\(8x-\left|4x+1\right|=x+2\)
\(\Rightarrow\left|4x+1\right|=8x-x-2\)
\(\Rightarrow\left|4x+1\right|=7x-2\)
\(\Rightarrow\orbr{\begin{cases}4x+1=7x-2\\4x+1=2-7x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}4x-7x=-2-1\\4x+7x=2-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}-3x=-3\\11x=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{11}\end{cases}}\)
Ta có: 8x - |4x + 1| = x + 2
=> |4x + 1| = 8x - x - 2
=> |4x + 1| = 7x - 2
ĐKXĐ: 7x - 2 \(\ge\)0 <=> 7x \(\ge\)2 <=> x \(\ge\)2/7
TH1: 4x + 1 = 7x - 2
=> 4x - 7x = -2 - 1
=> -3x = -3
=> x = (-3) : (-3)
=> x = 1 (tm)
TH2: 4x + 1 = -7x + 2
=> 4x + 7x = 2 - 1
=> 11x = 1
=> x = 1/11 (ktm)
Vậy ....