Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(\left(x-4\right)^2-\left(2x+1\right)^2=\left(x-4-2x-1\right)\left(x-4+2x+1\right)=-3\left(x+5\right)\left(x-1\right).\)
\(\orbr{\begin{cases}x+5=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=1\end{cases}}}\)(mấy cái này áp dụng hàng đẳng thức lớp 8 mới hok)
2,\(x^3+x^2-4x-4=\left(x-2\right)\left(x^2+3x+2\right)=\left(x-2\right)\left(x+1\right)\left(x+2\right)\)
\(\orbr{\begin{cases}x=\mp2\\\end{cases}}x=-1\)
tương tụ lm tiếp nhe buồn ngủ quá rồi !
1. f(x) = -3x4 + 5x3 + 2x2 - 7x + 7 tại x = 1; 0; 2
xét x=1 có f(x) =-3.14 +5.13 +2.12-7.1+7
=-3.1+5.1+2.1-7+7
=-3+5+2-7+7
=4
xét x=0 có f(x) =-3.04 +5.03 +2.02-7.0+7
=0+0+0-0+7=7
xét x=2 có f(x) =-3.24 +5.23 +2.22-7.2+7
=-3.16+5.8+2.4-14+7
=48+40+8-14+7
=89
2. g(x) = x4 - 5x3 + 7x2 + 15x + 2 tại x = -1; 0; 1; 2
xét x=-1 có: g(x)=(-1)4-5.(-1)3+7.(-1)2+15.(-1)+2
=1-5.(-1)+7.1-15+2
=1-(-5)+7-15+2
=1+5+7-15+2=0
xét x=0 có: g(x)=04-5.03+7.02+15.0+2
=0-0+0+0+2+2=2
xét x=1 có: g(x)=14-5.13+7.12+15.1+2
=1-5.1+7.1-15+2
=1-5+7-15+2
=1-5+7-15+2=-10
xét x=2 có: g(x)=24-5.23+7.22+15.2+2
=32-5.8+7.4-30+2
=32-40+28-30+2
=-8
3. h(x) = -x4 + 3x3 + 2x2 - 5x + 1 tại x = -2; -1; 1; 2
xét x=-2có:h(X)=-(-2)4 + 3(-2)3 + 2.(-2)2 - 5.(-2) + 1
=-(32)+3.(-8)+2.4+10+1
=-32-24+8+10+1
=-37
xét x=2có:h(X)=-(2)4 + 3.23 + 2.22 - 5.2 + 1
=-(32)+3.8+2.4+10+1
=-32+24+8+10+1
=11
xét x=1có:h(X)=14 + 3.13 + 2.12 - 5.1 + 1
=1+3.1+2.1+5+1
=1+3+2+5+1
=13
xét x=-1có:h(X)=-14 + 3.(-1)3 + 2.(-1)2 - 5.(-1) + 1
=1+3.(-1)+2.(-1)+5+1
=1-3-2+5+1
=2
4. r(x) = 3x4 + 7x3 + 4x2 - 2x - 2 tại x = -1; 0; 1
xét x=-1có:r(X)= 3(-1)4 + 7(-1)3 + 4(-1)2 - 2(-1)- 2
= 3.1+7.(-1) +4.1+2-2
=3-7+4+2-2
= 0
xét x=0có:r(X)= 3.04 + 7.03 + 4.02 - 2.0- 2
= 0+0+0-0-2
= -2
xét x=1có:r(X)= 3(1)4 + 7(1)3 + 4(1)2 - 2(1)- 2
= 3.1+7.1 +4.1-2-2
=3+7+4-2-2
= 10
Căng, sự thật là nó rất căng
Nhg dù sao thì.....
1) \(A\left(x\right)=\left(x-4\right)^2-\left(2x+1\right)^2\)
Xét \(A\left(x\right)=0\)
\(\Rightarrow\left(x-4\right)^2-\left(2x+1\right)^2=0\)
\(\Rightarrow x^2-8x+16-4x^2-4x-1=0\)
\(\Rightarrow-3x^2-12x+15=0\)
\(\Rightarrow-3x^2+3x-15x+15=0\)
\(\Rightarrow-3x\left(x-1\right)-15\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(-3x-15\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\-3x-15=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
2)(Sửa đề nha, sai cmnr) \(B\left(x\right)=x^3+x^2-4x-4\)
Xét \(B\left(x\right)=0\)
\(\Rightarrow x^3+x^2-4x-4=0\)
\(\Rightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
\(\Rightarrow\left(x^2-4\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\pm2\\x=-1\end{matrix}\right.\)
Đó là những j mình biết
a ) M(x) + N(x) + P(x) = (\(3x^3+x^2+4x^4-x-3x^3+5x^4+x^2-6\)) + (\(-x^2-x^4+4x^3-x^2-5x^3+3x+1+x\)) + (\(1+2x^5-3x^2+x^5+3x^3-x^4-2x\))
= \(3x^3+x^2+4x^4-x-3x^3+5x^4+x^2-6\) \(-x^2-x^4+4x^3-x^2-5x^3+3x+1+x\)\(1+2x^5-3x^2+x^5+3x^3-x^4-2x\)
= ( \(3x^3-3x^3+4x^3-5x^3+3x^3\) ) + ( \(x^2+x^2-x^2-x^2-3x^2\) ) + (\(4x^4+5x^4-x^4-x^4\) ) + ( \(-x+3x+x-2x\) ) + ( \(-6+1+1\) ) + (\(2x^5+x^5\) )
= \(2x^3-3x^2+7x^4+x-4+3x^5\)
1. Ta có \(|3x-1|=\frac{1}{2}\)
\(\Rightarrow\)\(\orbr{\begin{cases}3x-1=\frac{1}{2}\\3x-1=-\frac{1}{2}\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=(\frac{1}{2}+1):3\\x=(-\frac{1}{2}+1):3\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{6}\end{cases}}\)
Sau đó tự thay x vào đa thức theo 2 trường hợp trên nha
Sai thì thôi nha bn mik cx chưa lm dạng này bh
Câu 1:
\(A\left(x\right)=6x^4-4x^2-3+9x+5x^2-7x-2x^4+4-2x-4x^4\)
\(=\left(6x^4-2x^4-4x^4\right)+\left(-4x^2+5x^2\right)+\left(-7x-2x\right)+9x+\left(-3+4\right)\)
\(=x^2+9x+1\)
Ta có: \(\left|3x-1\right|=\frac{1}{2}\)
TH1: \(3x-1=\frac{1}{2}\Rightarrow3x=\frac{1}{2}+1=\frac{3}{2}\Rightarrow x=\frac{3}{2}:3=\frac{1}{2}\)
\(A\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2+9\cdot\frac{1}{2}+1=\frac{1}{4}+\frac{9}{2}+1=\frac{23}{4}\)
TH2: \(3x-1=\frac{-1}{2}\Rightarrow3x=\frac{-1}{2}+1=\frac{1}{2}\Rightarrow x=\frac{1}{2}:3=\frac{1}{6}\)
\(A\left(\frac{1}{6}\right)=\left(\frac{1}{6}\right)^2+9\cdot\frac{1}{6}+1=\frac{91}{36}\)
M (x)- N (x)
= \(3x^4+5x^3-3x^2+4x-2\) - \(2x^4-5x^3+4x^2-4x+5\)
= \(x^4+x^2+3\)
Do \(x^4\ge0\) ( với mọi x )
\(x^2\ge0\) ( với mọi x )
=> \(x^4+x^2+3>0\) ( với mọi x )
Vậy M(x) - N(x) vô nghiệm
tìm x chứ cosphair thu gọn đou nhỉ