Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Rightarrow\left(2x-4\right)^{x+1}\left[\left(2x-4\right)^4-1\right]=0\)
=>(2x-4)(2x-3)(2x-5)=0
hay \(x\in\left\{2;\dfrac{3}{2};\dfrac{5}{2}\right\}\)
b: \(\Leftrightarrow\left(x-3\right)^{x+4}\left(x-3-1\right)=0\)
=>(x-3)x+4(x-4)=0
=>x=3 hoặc x=4
c: \(\Leftrightarrow\left[{}\begin{matrix}x-1>2\\x-1< -2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>3\\x< -1\end{matrix}\right.\)
d: =>-5<=2x+3<=5
=>-8<=2x<=2
=>-4<=x<=1
\(x^2-2x=0\)
\(x.\left(x+2\right)=0\)
\(=>\orbr{\begin{cases}x=0\\x+2=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
vậy...
\(x^2=2x\)
\(x^2-2x=0\)
\(x\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy,...........
Đặt \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}=k\)
=> \(x=3k\) \(y=7k\) \(z=2k\)
Ta có: \(2x^2+y^2+3z^2=316\)
\(\Leftrightarrow\)\(2\left(3k\right)^2+\left(7k\right)^2+3\left(2k\right)^2=316\)
\(\Leftrightarrow\)\(18k^2+49k^2+12k^2=316\)
\(\Leftrightarrow\)\(79k^2=316\)
\(\Leftrightarrow\)\(k^2=4\)
\(\Leftrightarrow\)\(k=\pm2\)
- \(k=2\)thì: \(x=6;\)\(y=14;\)\(z=4\)
- \(k=-2\)thì: \(x=-6;\)\(y=-14;\)\(z=-4\)
Vậy...
Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}->\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)
->\(\frac{2x^2}{8}=\frac{3y^2}{27}=\frac{5z^2}{80}\) và 2x2+3y2-5x2=-405
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{2x^2}{8}=\frac{3y^2}{27}=\frac{5z^2}{80}=\frac{2x^2+3y^2-5z^2}{8+27-80}=-\frac{405}{-45}=9\)
Do đó, *)x2/4=9 => x2=9*4=36
=> x=6 hoặc x=-6
*)y2/9=9 => x2=9*9=81
=> y=9 hoặc y=-9
*)z2/16=9 => z2=9*16=144
=> z=12 hoặc z=-12
Vậy x=6; y=9 ; z=12 hoặc x=-6;y=-9;z=-12
chịu thui
chuc bn hoc tốt nha!
nhae$Demngayxaem
nhaE
hihi
____________________________
1,
\(\left(2x+1\right)^3=-0,001\\ \left(2x+1\right)^3=\left(-0.1\right)^3\\ \Leftrightarrow2x+1=-0.1\\ 2x=-1.1\\ x=-\dfrac{11}{10}:2\\ x=-\dfrac{11}{20}\\ Vậy...\)
2,
\(\left(2x-3\right)^4=\left(2x-3\right)^6\\ \Leftrightarrow\left(2x-3\right)^6-\left(2x-3\right)^4=0\\ \Leftrightarrow\left(2x-3\right)^4\cdot\left[\left(2x-3\right)^2-1\right]=0\\ \Rightarrow\left\{{}\begin{matrix}\left(2x-3\right)^4=0\\\left(2x-3\right)^2-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x-3=0\\\left(2x-3\right)^2=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x=3\\2x-3=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\x=2\end{matrix}\right.\\ Vậyx\in\left\{\dfrac{3}{2};2\right\}\)
3, Làm tương tự câu 2
5,
\(9^x:3^x=3\\ \left(9:3\right)^x=3\\ 3^x=3\\ \Rightarrow x=1\\ Vậy...\)
6,
\(3^x+3^{x+3}=756\\ 3^x+3^x\cdot3^3\\ 3^x\cdot\left(1+27\right)=756\\ 3^x\cdot28=756\\ \Leftrightarrow3^x=27\\ 3^x=3^3\\ \Rightarrow x=3\\ vậy...\)
7,
\(5^{x+1}+6\cdot5^{x+1}=875\\ 5^{x+1}\cdot\left(1+6\right)=875\\ 5^{x+1}\cdot7=875\\ \Leftrightarrow5^{x+1}=125\\ \Leftrightarrow5^{x+1}=5^3\Leftrightarrow x+1=3\\ \Rightarrow x=2\\ Vậy...\)
9,
a: \(C=\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\)
Dấu '=' xảy ra khi x=-1 và y=1/3
b: \(\left(2x-1\right)^2+3>=3\)
Do đó: D<=5/3
Dấu '=' xảy ra khi x=1/2
x3y5+3x3y5+5x3y5+...+(2k-1)x3y5 =3249x3y5
x3y5.[1+3+5+...+(2k-1)]=3249x3y5
=>1+3+5+...+(2k-1)=3249
\(\frac{\left(2k-1+1\right).\left[\left(2k-1-1\right):2\right]}{2}=3249\)
\(\frac{2k.\left[\left(2k-2\right):2+1\right]}{2}=3249\)
\(\frac{2k.\left(k-1+1\right)}{2}=3249\)
\(k^2=3249\)
\(k=57\)
công thức: \(\dfrac{a^m}{a^n}=a^{m-n}\)
do \(5^{2x-3}\ne0\)
=> \(\dfrac{5^{2x-1}}{5^{2x-3}}=1+24\cdot\dfrac{5^3}{5^{2x-3}}\)
\(\Rightarrow5^2=1+24\cdot5^{6-2x}\)
\(\Leftrightarrow5^{6-2x}=1\)
\(\Leftrightarrow6-2x=0\) => x=3
a; \(5^{2x-1}\) = 5\(^{2x-3}\) + 125.24
5\(^{2x-1}\) - 5\(^{2x-3}\) = 125.24
5\(^{2x-3}\).(52 - 1) = 125.24
5\(^{2x-3}\).24 = 125.24
52\(x-3\) = 125.24:24
5\(^{2x-3}\) = 125
5\(^{2x-3}\) = 53
2\(x\) - 3 = 3
2\(x\) = 6
\(x\) = 6 : 2
\(x\) = 3
a)= \(4x^2y+2x^2y-5x^2y-3y^3-5y^3-6xy^2\)
=\(2x^2y-8y^3-6xy\)
b) =\(2xyz-8xyz-11xy^3+2xy^3+4xy-2xy-11\)
=\(-6xyz-9xy^3+2xy-11\)
mình ko viết đề bài đâu 2 câu còn lại làm tương tự nhé
a. \(4x^2y-3y^3-6xy^2-5y^3+2x^2y-5x^2y\)
\(=-8y^3+x^2y-6xy^2\)
b. \(2xyz-11xy^3-8xyz+2xy^3+4xy-11-2xy\)
\(=-6xyz-9xy^3+2xy-11\)
c. \(x\left(x-5\right)-3x\left(x-1\right)+6\left(x-2\right)\)
\(=x^2-5x-3x^2-3x+6x-12\)
\(=-2x^2-2x-12\)
d. \(x^3\left(x-2\right)-2x^2\left(x^2-x\right)+5\left(2x^4-1\right)\)
\(=x^4-2x^3-2x^4-2x^3+10x^4-5\)
\(=9x^4-4x^3-5\)
ertyhjkl