Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(\left|x\right|=3,5\Rightarrow\left[{}\begin{matrix}x=3,5\\x=-3,5\end{matrix}\right.\)
d) \(\left|x\right|=-2,7\Rightarrow x\in\varnothing\)
l) \(\left|x+\dfrac{3}{4}\right|-5=-2\Rightarrow\left|x+\dfrac{3}{4}\right|=3\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{3}{4}=3\\x+\dfrac{3}{4}=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3-\dfrac{3}{4}\\x=-3-\dfrac{3}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\\x=\dfrac{15}{4}\end{matrix}\right.\)
Đính chính câu l \(x=-\dfrac{15}{4}\) không phải \(x=\dfrac{15}{4}\)
a) \(3a=2b\)\(\Rightarrow\)\(\frac{a}{2}=\frac{b}{3}\) hay \(\frac{a}{10}=\frac{b}{15}\)
\(4b=5c\)\(\Rightarrow\)\(\frac{b}{5}=\frac{c}{4}\) hay \(\frac{b}{15}=\frac{c}{12}\)
suy ra: \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
đến đây bạn áp dụng tính chất dãy tỉ số bằng nhau nha
b) \(\left|x-1\right|+\left|y+\frac{2}{3}\right|+\left|x^2+xz\right|=0\)
Nhận thấy: \(\left|x-1\right|\ge0\) \(\left|y+\frac{2}{3}\right|\ge0;\) \(\left|x^2+xz\right|\ge0\)
suy ra: \(\left|x-1\right|+\left|y+\frac{2}{3}\right|+\left|x^2+xz\right|\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x-1=0\\y+\frac{2}{3}=0\\x^2+xz=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=1\\y=-\frac{2}{3}\\z=-1\end{cases}}\)
Vậy....
Ta có:
\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\)
=> \(\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right).x=\frac{2012}{51}+\frac{2012}{52}+...+\frac{2012}{99}+\frac{2012}{100}\)
=> \(\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right).x=2012.\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right)\)
=> x = 2012
1/53+-1/106+-1/159=|x|/318
6/318+-3/318+-2/318=|x|/318
1/318=|x|/318
=>|x|=1
x=1 hoặc x=-1
ta có: \(\frac{x}{2}=\frac{y}{3}\)\(\Rightarrow\)\(\frac{x^2}{2^2}=\frac{y^2}{3^2}\)
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{2^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{2^2+3^2}=\frac{52}{13}=4\)
\(\frac{x^2}{2^2}=4\Rightarrow x=\sqrt{4\cdot2^2}=4\)
\(\frac{y^2}{3^2}=4\Rightarrow y=\sqrt{4\cdot3^2}=6\)
Vậy x = 4, y = 6
Theo bài ra ta cs
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)
\(4y=5z\Rightarrow\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{15}=\frac{z}{12}\left(2\right)\)
Từ (1) ; (2) => \(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{-x-y+z}{-10-15+12}=-\frac{52}{-13}=4\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=4\\\frac{y}{15}=4\\\frac{z}{12}=4\end{cases}\Rightarrow\hept{\begin{cases}x=40\\y=60\\z=48\end{cases}}}\)
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{6}=\frac{x+y+z}{3+4+6}=\frac{52}{13}=4\)
\(\Rightarrow\frac{x}{3}=4\Rightarrow x=12\)
\(\frac{y}{4}=4\Rightarrow y=16\)
\(\frac{z}{6}=4\Rightarrow z=24\)
\(5^2.7^3.11^2.x+5^3.7^2.11=0\)
\(\Rightarrow5^2.7^2.11\left(7.11.x+5\right)=0\)
Vì \(5^2.7^2.11>0\)
\(\Rightarrow7.11.x+5=0\)
\(\Rightarrow77x=5\)
\(\Rightarrow x=\frac{5}{77}\)