Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow x-1=4\Leftrightarrow x=5\\ b,\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\3x+1=4x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\x=4\left(tm\right)\end{matrix}\right.\Leftrightarrow x=4\\ c,ĐK:x\ge-5\\ PT\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\\ \Leftrightarrow3\sqrt{x+5}=6\\ \Leftrightarrow\sqrt{x+5}=3\\ \Leftrightarrow x+5=9\\ \Leftrightarrow x=4\left(tm\right)\)
\(d,\Leftrightarrow\sqrt{\left(x-2\right)^2}=\sqrt{\left(\sqrt{5}+1\right)^2}\\ \Leftrightarrow\left|x-2\right|=\sqrt{5}+1\\ \Leftrightarrow\left[{}\begin{matrix}x-2=\sqrt{5}+1\\2-x=\sqrt{5}+1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}+3\\x=1-\sqrt{5}\end{matrix}\right.\)
Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow\sqrt{x+5}=2\)
\(\Leftrightarrow x+5=4\)
hay x=-1
\(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\cdot\sqrt{9x+45}=6\left(x\ge-5\right)\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+\dfrac{4}{3}\cdot3\cdot\sqrt{x+5}=6\)
\(\Leftrightarrow3\cdot\sqrt{x+5}=6\)
\(\Leftrightarrow\sqrt{x+5}=2\)
\(\Leftrightarrow x+5=2^2=4\)
\(\Leftrightarrow x=-1\left(N\right)\)
a. \(\Rightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\Rightarrow\sqrt{x+5}\left(2-3+4\right)=6\Rightarrow\sqrt{x+5}=2\Rightarrow x+5=4\Rightarrow x=-1\)
b.\(\Rightarrow5\sqrt{x-1}-\frac{5}{2}\sqrt{x-1}-\sqrt{x-1}=6\Rightarrow\sqrt{x-1}\left(5-\frac{5}{2}-1\right)=6\Rightarrow\sqrt{x-1}=4\Rightarrow x-1=16\Rightarrow x=17\)
Lời giải:
a. ĐKXĐ: $x\geq 5$
PT $\Leftrightarrow \sqrt{4}.\sqrt{x-5}+\sqrt{x-5}=4+3.\sqrt{\frac{1}{9}}.\sqrt{x-5}$
$\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}=4+\sqrt{x-5}$
$\Leftrightarrow 2\sqrt{x-5}=4$
$\Leftrightarrow \sqrt{x-5}=2$
$\Leftrightarrow x-5=4$
$\Leftrightarrow x=9$ (tm)
b. Sửa đoạn 4x-45 thành 4x-20.
ĐKXĐ: $x\geq 5$
PT $\Leftrightarrow \sqrt{4}.\sqrt{x-5}+\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}\sqrt{4}.\sqrt{x-5}=4$
$\Leftrightarrow 2\sqrt{x-5}+\frac{1}{3}\sqrt{x-5}-\frac{2}{3}\sqrt{x-5}=4$
$\Leftrightarrow \frac{5}{3}\sqrt{x-5}=4$
$\Leftrightarrow \sqrt{x-5}=\frac{12}{5}$
$\Leftrightarrow x-5=\frac{144}{25}=5,76$
$\Leftrightarrow x=10,76$ (tm)
`a)sqrt{x^2-2x+1}=2`
`<=>sqrt{(x-1)^2}=2`
`<=>|x-1|=2`
`**x-1=2<=>x=3`
`**x-1=-1<=>x=-1`.
Vậy `S={3,-1}`
`b)sqrt{x^2-1}=x`
Điều kiện:\(\begin{cases}x^2-1 \ge 0\\x \ge 0\\\end{cases}\)
`<=>` \(\begin{cases}x^2 \ge 1\\x \ge 0\\\end{cases}\)
`<=>x>=1`
`pt<=>x^2-1=x^2`
`<=>-1=0` vô lý
Vậy pt vô nghiệm
`c)sqrt{4x-20}+3sqrt{(x-5)/9}-1/3sqrt{9x-45}=4(x>=5)`
`pt<=>sqrt{4(x-5)}+sqrt{9*(x-5)/9}-sqrt{(9x-45)*1/9}=4`
`<=>2sqrt{x-5}+sqrt{x-5}-sqrt{x-5}=4`
`<=>2sqrt{x-5}=4`
`<=>sqrt{x-5}=2`
`<=>x-5=4`
`<=>x=9(tmđk)`
Vậy `S={9}.`
`d)x-5sqrt{x-2}=-2(x>=2)`
`<=>x-2-5sqrt{x-2}+4=0`
Đặt `a=sqrt{x-2}`
`pt<=>a^2-5a+4=0`
`<=>a_1=1,a_2=4`
`<=>sqrt{x-2}=1,sqrt{x-2}=4`
`<=>x_1=3,x_2=18`,
`e)2x-3sqrt{2x-1}-5=0`
`<=>2x-1-3sqrt{2x-1}-4=0`
Đặt `a=sqrt{2x-1}(a>=0)`
`pt<=>a^2-3a-4=0`
`a-b+c=0`
`<=>a_1=-1(l),a_2=4(tm)`
`<=>sqrt{2x-1}=4`
`<=>2x-1=16`
`<=>x=17/2(tm)`
Vậy `S={17/2}`
d.
ĐKXĐ: $x\geq 2$. Đặt $\sqrt{x-2}=a(a\geq 0)$ thì pt trở thành:
$a^2+2-5a=-2$
$\Leftrightarrow a^2-5a+4=0$
$\Leftrightarrow (a-1)(a-4)=0$
$\Rightarrow a=1$ hoặc $a=4$
$\Leftrightarrow \sqrt{x-2}=1$ hoặc $\sqrt{x-2}=4$
$\Leftrightarrow x=3$ hoặc $x=18$ (đều thỏa mãn)
e. ĐKXĐ: $x\geq \frac{1}{2}$
Đặt $\sqrt{2x-1}=a(a\geq 0)$ thì pt trở thành:
$a^2+1-3a-5=0$
$\Leftrightarrow a^2-3a-4=0$
$\Leftrightarrow (a+1)(a-4)=0$
Vì $a\geq 0$ nên $a=4$
$\Leftrightarrow \sqrt{2x-1}=4$
$\Leftrightarrow x=\frac{17}{2}$
`sqrt{4x+20}-3sqrt{5+x}+4/3sqrt{9x+15}=6(x>=-5)`
`<=>sqrt{4(x+5)}-3sqrt{x+5}+4/3sqrt{9(x+5)}=6`
`<=>2sqrt{x+5}-3sqrt{x+5}+4sqrt{x+5}=6`
`<=>3sqrt{x+5}=6`
`<=>sqrt{x+5}=2`
`<=>x+5=4`
`<=>x=-1(tm)`
Vậy `x=-1`
a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow x+5=4\)
hay x=-1
b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290
\(d,ĐK:x\ge0\\ PT\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=2\\\sqrt{x}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=9\left(tm\right)\end{matrix}\right.\\ e,ĐK:x\ge1\\ PT\Leftrightarrow\sqrt{x-1}+\dfrac{3}{2}\cdot2\sqrt{x-1}-\dfrac{2}{5}\cdot5\sqrt{x-1}=4\\ \Leftrightarrow2\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=2\\ \Leftrightarrow x-1=4\Leftrightarrow x=5\left(tm\right)\\ f,ĐK:x\ge5\\ PT\Leftrightarrow\sqrt{x-5}+2\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=6\\ \Leftrightarrow2\sqrt{x-5}=6\Leftrightarrow\sqrt{x-5}=3\\ \Leftrightarrow x-5=9\Leftrightarrow x=14\left(tm\right)\)