
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


x2 + 5y2 - 4xy + 6x - 14y + 10 = 0
=> (x2 - 4xy + 4y2) + (6x - 12y) + 9 + (y2 - 2y + 1) = 0
=> (x - 2y)2 + 6(x - 2y) + 9 + (y - 1)2 = 0
=> (x - 2y + 3)2 + (y - 1)2 = 0
=> \(\hept{\begin{cases}x-2y+3=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
Vậy x = 1 ; y = - 1 là giá trị cần tìm

Bài 1.
a) x( 8x - 2 ) - 8x2 + 12 = 0
<=> 8x2 - 2x - 8x2 + 12 = 0
<=> 12 - 2x = 0
<=> 2x = 12
<=> x = 6
b) x( 4x - 5 ) - ( 2x + 1 )2 = 0
<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0
<=> 4x2 - 5x - 4x2 - 4x - 1 = 0
<=> -9x - 1 = 0
<=> -9x = 1
<=> x = -1/9
c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )
<=> -4x2 - 4x + 35 = 4x2 - 25
<=> -4x2 - 4x + 35 - 4x2 + 25 = 0
<=> -8x2 - 4x + 60 = 0
<=> -8x2 + 20x - 24x + 60 = 0
<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0
<=> ( 2x - 5 )( -4x - 12 ) = 0
<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)
d) 64x2 - 49 = 0
<=> ( 8x )2 - 72 = 0
<=> ( 8x - 7 )( 8x + 7 ) = 0
<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)
e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0
<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0
<=> ( x + 3 )2 [ x( x + 1 ) + 7( x + 1 ) ] = 0
<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0
<=> x = -3 hoặc x = -1 hoặc x = -7
g) ( x2 + 1 )( x2 - 8x + 7 ) = 0
Vì x2 + 1 ≥ 1 > 0 với mọi x
=> x2 - 8x + 7 = 0
=> x2 - x - 7x + 7 = 0
=> x( x - 1 ) - 7( x - 1 ) = 0
=> ( x - 1 )( x - 7 ) = 0
=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)
Bài 2.
a) ( x - 1 )2 - ( x - 2 )( x + 2 )
= x2 - 2x + 1 - ( x2 - 4 )
= x2 - 2x + 1 - x2 + 4
= -2x + 5
b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2
= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4
= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )
= -60x2 + 40x2 + 49
d) ( x + y )2 - ( x + y - 2 )2
= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]
= ( x + y - x - y + 2 )( x + y + x + y - 2 )
= 2( 2x + 2y - 2 )
= 4x + 4y - 4
Bài 3.
A = 3x2 + 18x + 33
= 3( x2 + 6x + 9 ) + 6
= 3( x + 3 )2 + 6 ≥ 6 ∀ x
Đẳng thức xảy ra <=> x + 3 = 0 => x = -3
=> MinA = 6 <=> x = -3
B = x2 - 6x + 10 + y2
= ( x2 - 6x + 9 ) + y2 + 1
= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)
=> MinB = 1 <=> x = 3 ; y = 0
C = ( 2x - 1 )2 + ( x + 2 )2
= 4x2 - 4x + 1 + x2 + 4x + 4
= 5x2 + 5 ≥ 5 ∀ x
Đẳng thức xảy ra <=> 5x2 = 0 => x = 0
=> MinC = 5 <=> x = 0
D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )
Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN
7x2 - 8x + 7
= 7( x2 - 8/7x + 16/49 ) + 33/7
= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x
Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7
=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7

x2+3x2+3x+1-3x2-3x = 0
=> x3+1 = 0
=> x3 = 0-1
=> x3 = -1
=> x = -1
\(x^3+3x^2+3x+1-3x^2-3x=0\)0
\(\Leftrightarrow x^3+\left(3x^2-3x^2\right)+\left(3x-3x\right)+1=0\)
\(\Leftrightarrow x^3+1=0\)
\(\Leftrightarrow x^3=1\)
\(\Leftrightarrow x^3=1^3\)
\(\Rightarrow x=1\)

a)\(x\left(x+2\right)-3x-6=0\)
=>\(x\left(x+2\right)-3\left(x+2\right)=0\)
=>\(\left(x-3\right)\left(x+2\right)=0\)
=>\(\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
b)\(x^3+3x^2+3x-1-3x^2-3x=0\)
=>\(x^3-1=0\)
=>x3=1
=>x=1

1)2x3+3x2+2x+3=0
=> (2x3+3x2)+(2x+3)=0
=> x2(2x+3)+(2x+3)=0
=> (2x+3)(x2+1)=0
=>\(\hept{\begin{cases}2x+3=0\\x^2+1=0\end{cases}}\)=>\(\hept{\begin{cases}2x=-3\\x^2=-1\end{cases}}\)=>\(\hept{\begin{cases}x=\frac{-3}{2}\\vo.nghiem\end{cases}}\)
Vậy x=-3/2
2)x2-3x-18=0
=> (x2+3x)-(6x+18)=0
=> x(x+3)-6(x+3)=0
=> (x+3)(x-6)=0
=> \(\hept{\begin{cases}x+3=0\\x-6=0\end{cases}}\)=>\(\hept{\begin{cases}x=-3\\x=6\end{cases}}\)
Vậy x=-3 hoặc x=6
3)Sai đề rồi bạn, 30 thành 30x mới đúng
x3-11x2+30x=0
=> x(x2-11x+30)=0
=> x[(x2-5x)-(6x-30)]=0
=> x[x(x-5)-6(x-5)]=0
=> x(x-5)(x-6)=0
=>\(\hept{\begin{cases}x=0\\x-5=0\\x-6=0\end{cases}}\)=>\(\hept{\begin{cases}x=0\\x=5\\x=6\end{cases}}\)
Vậy x=0 hoặc x=5 hoặc x=6

\(3x^2-27x=0\)
\(3x\left(x-9\right)=0\)
\(\left[\begin{array}{nghiempt}x=0\\x-9=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=0\\x=9\end{array}\right.\)
\(\frac{2}{3}x\left(x^2-4\right)=0\)
\(\frac{2}{3}x\left(x-2\right)\left(x+2\right)=0\)
\(\left[\begin{array}{nghiempt}x=0\\x-2=0\\x+2=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=0\\x=2\\x=-2\end{array}\right.\)
a)\(3x^2-27x=0\)
\(3x\left(x-9\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}3x=0\\x-9=0\end{array}\right.\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=9\end{array}\right.\)
b) \(\frac{2}{3}x\left(x^2-4\right)=0\)
\(\frac{2}{3}x\left(x+2\right)\left(x-2\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}\frac{2}{3}x=0\\x+2=0\\x-2=0\end{array}\right.\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=-2\\x=2\end{array}\right.\)

a) 6x3 + 3x2 + 4x + 2
= ( 6x3 + 3x2 ) + ( 4x + 2 )
= 3x2( 2x + 1 ) + 2( 2x + 1 )
= ( 2x + 1 )( 3x2 + 2 )
=> ( 6x3 + 3x2 + 4x + 2 ) : ( 3x2 + 2 ) = 2x + 1
b) 2x3 - 26x - 24
= 2( x3 - 13x - 12 )
= 2( x3 + 4x2 - 4x2 + 3x - 16x - 12 )
= 2[ ( x3 + 4x2 + 3x ) - ( 4x2 + 16x + 12 ) ]
= 2[ x( x2 + 4x + 3 ) - 4( x2 + 4x + 3 ) ]
= 2( x2 + 4x + 3 )( x - 4 )
=> ( 2x3 - 26x - 24 ) : ( x2 + 4x + 3 ) = 2( x - 4 ) = 2x - 8
c) x3 - 7x + 6
= x3 - 3x2 + 3x2 + 2x - 9x - 6
= ( x3 - 3x2 + 2x ) + ( 3x2 - 9x + 6 )
= x( x2 - 3x + 2 ) + 3( x2 - 3x + 2 )
= ( x2 - 3x + 2 )( x + 3 )
=> ( x3 - 7x + 6 ) : ( x + 3 ) = x2 - 3x + 2
a,\(\left(6x^3+3x^2+4x+2\right)\div\left(3x^2+2\right)\)
\(=\left[3x^2\left(2x+1\right)+2\left(2x+1\right)\right]\div\left(3x^2+2\right)\)
\(=\left[\left(3x^2+2\right)\left(2x+1\right)\right]\div\left(3x^2+2\right)\)
\(=2x+1\)
3x2+26x=0
x(3x+26)=0
=>x=0 hoặc 3x+26=0
3x=-26
x=-26/3
Vậy x=0 hoặc x=-26/3
3x2+26x=0
=>x=0