Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) Ta có:
\(P\left(x\right)=x^5-3x^2+7x^4-9x^3+x^2-\frac{1}{4}x\)
\(P\left(x\right)=x^5-2x^2+7x^4-9x^3-\frac{1}{4}x\)
\(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)
\(Q\left(x\right)=5x^4-x^5+x^2-2x^3+3x^2-\frac{1}{4}\)
\(Q\left(x\right)=5x^4-x^5-2x^3+4x^2-\frac{1}{4}\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
b) \(P\left(x\right)+Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
\(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}x-\frac{1}{4}\)
Vậy \(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}x-\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x+x^5-5x^4+2x^3-4x^2+\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=2x^5-2x^4-7x^3-6x^2-\frac{1}{4}x-\frac{1}{4}\)
Vậy \(P\left(x\right)-Q\left(x\right)=2x^5-2x^4-7x^3-6x^2-\frac{1}{4}x-\frac{1}{4}\)
c) Ta có:
\(P\left(1\right)=1^5+7.1^4-9.1^3-2.1^2-\frac{1}{4}.1\)
\(P\left(1\right)=-\frac{13}{4}\)
Vậy giá trị của biểu thức P = -13/4 khi x = 1
\(Q\left(0\right)=-0^5+5.0^4-2.0^3+4.0^2-\frac{1}{4}\)
\(Q\left(0\right)=-\frac{1}{4}\)
Vậy \(Q\left(0\right)=-\frac{1}{4}\)
Bài 1:
1)
\(\dfrac{3x+2}{4}\) = \(\dfrac{5x-3}{3}\)
<=> 3(3x + 2) = 4(5x - 3)
<=> 9x + 6 = 20x - 12
<=> 6 +12 = 20x - 9x
<=> 11x = 18
<=> x = \(\dfrac{18}{11}\)
Vậy: x = \(\dfrac{18}{11}\)
2)
\(\dfrac{x-1}{3x+2}\)= \(\dfrac{1}{5}\)
<=> 5(x - 1) = 3x + 2
<=> 5x - 5 = 3x + 2
<=> 5x - 3x = 2 +5
<=> 2x = 7
<=> x = \(\dfrac{7}{2}\)
Vậy : x = \(\dfrac{7}{2}\)
Bài 1 :
1) Ta có :
\(\dfrac{3x+2}{4}=\dfrac{5x-3}{3}\\ \Leftrightarrow4\cdot\left(5x-3\right)=3\cdot\left(3x+2\right)\\ \Leftrightarrow20x-12=9x+6\\ \Leftrightarrow20x-18=9x\\ \Leftrightarrow20x-9x=18\\ \Leftrightarrow11x=18\\ \Leftrightarrow x=\dfrac{18}{11}\\ Vậy.,...\)
2) Ta có :
\(\dfrac{x-1}{3x+2}=\dfrac{1}{5}\Leftrightarrow5\cdot\left(x-1\right)=3x+2\\ \Leftrightarrow5x-5=3x+2\\ \Leftrightarrow5x-3x-5=2\\ \Leftrightarrow2x-5=2\\ \Leftrightarrow2x=7\\ \Leftrightarrow x=\dfrac{7}{2}\)
Vậy ....
Bài 2 ;
1) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{21}{7}=3\\ \Rightarrow\left\{{}\begin{matrix}x=3\cdot3=9\\y=3\cdot4=12\end{matrix}\right.\\ Vậy...\)
2) Ta có : \(3x=5y\Leftrightarrow\dfrac{x}{5}=\dfrac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x-y}{5-3}=\dfrac{-16}{2}=-8\\ \Rightarrow\left\{{}\begin{matrix}x=-8\cdot5=-40\\y=-8\cdot3=-24\end{matrix}\right.\\ Vậy....\)
3) Ta có : \(4x=7y\Leftrightarrow\dfrac{x}{7}=\dfrac{y}{4}=\dfrac{x^2}{7^2}=\dfrac{y^2}{4^2}=\dfrac{x\cdot y}{7\cdot4}\\ \Leftrightarrow\dfrac{x}{7}=\dfrac{y}{4}=\dfrac{112}{28}=4\\ \Rightarrow\left\{{}\begin{matrix}x=4\cdot7=28\\y=4\cdot4=16\end{matrix}\right.\\ Vậy...\)
a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{-21}{7}=-3\)
+) \(\frac{x}{3}=-3\Leftrightarrow x=-9\)
+) \(\frac{y}{4}=-3\Leftrightarrow y=-12\)
Vậy x = -9; y = -12
b) Ta có : \(3x=7y\Leftrightarrow\frac{x}{7}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{-16}{4}=-4\)
+) \(\frac{x}{7}=-4\Leftrightarrow x=-28\)
+) \(\frac{y}{3}=-4\Leftrightarrow y=-12\)
Vậy x = -28; y = -12
_Chúc bạn học tốt_
B1:
a) \(\frac{x+4}{x+3}=\frac{x+9}{x+4}\)
-->(x+4)(x+4)=(x+3)(x+9)
\(x^2\)+4x+4x+16=\(x^2\)+9x+3x+27
\(x^2-x^2\)+4x+4x-9x-3x= - 16+27
- 4x=11
x=\(\frac{-4}{11}\)
b) \(\frac{x-5}{x+3}=\frac{x-4}{x+6}\)
-->(x-5)(x+6)=(x+3)(x-4)
\(x^2\)+6x-5x-30=\(x^2\)-4x+3x-12
\(x^2-x^2\)+6x-5x+4x-3x=30-12
2x=18
x=9
c)\(\frac{3x-1}{3x}=\frac{2x-1}{2x+1}\)
--> (3x-1)(2x+1)=3x.(2x-1)
\(6x^2\)+3x-2x-1=\(6x^2\)-3x
\(6x^2-6x^2\)+3x-2x+3x=1
4x=1
x=\(\frac{1}{4}\)
\(\left(\frac{x}{20}+1\right)+\left(\frac{x-1}{21}+1\right)=\left(\frac{x-2}{22}+1\right)+\left(\frac{x-3}{23}+1\right)\)
\(\frac{x+20}{20}+\frac{x+20}{21}-\frac{x+20}{22}-\frac{x+20}{23}=0\)
\(\left(x+20\right).\left(\frac{1}{20}+\frac{1}{21}-\frac{1}{22}-\frac{1}{23}\right)=0\)
mà \(\left(\frac{1}{20}+\frac{1}{21}-\frac{1}{22}-\frac{1}{23}\right)\ne0\)
=> x+20=0 => x=-20
vậy x=-20
\(\frac{x}{20}+\frac{x-1}{21}=\frac{x-2}{22}+\frac{x-3}{23}\)
\(1+\frac{x}{20}+1+\frac{x-1}{21}=1+\frac{x-2}{22}+1+\frac{x-3}{23}\)
\(\frac{x+20}{20}+\frac{21+x-1}{21}=\frac{22+x-2}{22}+\frac{23+x-3}{23}\)
\(\frac{x+20}{20}+\frac{x+20}{21}=\frac{x+20}{22}+\frac{x+20}{23}\)
\(\frac{x+20}{20}+\frac{x+20}{21}-\frac{x+20}{22}-\frac{x+20}{23}=0\)
\(\left(x+20\right)\left(\frac{1}{20}+\frac{1}{21}-\frac{1}{22}-\frac{1}{23}\right)=0\)
Mà \(\frac{1}{20}+\frac{1}{21}-\frac{1}{22}-\frac{1}{23}\ne0\)
\(\Rightarrow x+20=0\)
\(\Rightarrow x=-20\)
Vậy x = -20
Giả:
\(\left|x^2-3x\right|\ge0,\forall x\)
\(\left|\left(x+1\right)\left(x+3\right)\right|\ge0,\forall x\)
=> \(\left|x^2-3x\right|+\left|\left(x+1\right)\left(x+3\right)\right|\ge0\)
Do đó: \(\left|x^2-3x\right|+\left|\left(x+1\right)\left(x+3\right)\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}\left|x^2-3x\right|=0\\\left|\left(x+1\right)\left(x+3\right)\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\left(x-3\right)=0\\\left(x+1\right)\left(x+3\right)=0\end{cases}}\)không có x thỏa mãn.
Bài giải
Ta có : \(\hept{\begin{cases}\left|x^2-3x\right|\ge0\\\left|\left(x+1\right)\left(x+3\right)\right|\ge0\end{cases}}\)
Mà \(\left|x^2-3x\right|+\left|\left(x+1\right)\left(x+3\right)\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|x^2-3x\right|=0\\\left|\left(x+1\right)\left(x+3\right)\right|=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x^2-3x=0\\\left(x+1\right)\left(x+3\right)=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x\left(x-3\right)=0\\\text{Hoặc }\left(x+1\right)=0\text{ hoặc }x+3=0\end{cases}}\) ( Không thoản mãn )
\(\Rightarrow\hept{\begin{cases}x=0\text{ hoặc }x-3=0\text{ }\Rightarrow\text{ }x=3\\x=-1\text{ hoặc }x=-3\end{cases}}\) ( Không thỏa mãn )
\(\Rightarrow\text{ }\text{ Không có x nào thoản mãn đề bài }\)
a) Để A lớn nhất thì \(\frac{15}{4.\left|3x+7\right|+3}\) lớn nhất hay 4.|3x + 7| + 3 nhỏ nhất
Có: \(4.\left|3x+7\right|+3\ge3\forall x\)
Dấu "=" xảy ra khi |3x + 7| = 0
=> 3x + 7 = 0
=> 3x = -7
\(\Rightarrow x=\frac{-7}{3}\)
Với x = \(\frac{-7}{3}\) thay vào đề bài ta được A = 10
Vậy \(A_{Max}=10\) khi x = \(\frac{-7}{3}\)
b) Để B lớn nhất thì \(\frac{21}{8.\left|15x-21\right|+7}\) lớn nhất hay 8.|15x - 21| + 7 nhỏ nhất
Có: \(8.\left|15x-21\right|+7\ge7\forall x\)
Dấu "=" xảy ra khi |15x - 21| = 0
=> 15x - 21 = 0
=> 15x = 21
\(\Rightarrow x=\frac{21}{15}=\frac{7}{5}\)
Với \(x=\frac{7}{5}\) thay vảo đề bài ta tìm được B = \(\frac{8}{3}\)
Vậy \(B_{Max}=\frac{8}{3}\) khi x = \(\frac{7}{5}\)
c) Có: \(\begin{cases}\left|x+1\right|\ge x+1\\\left|3x-4\right|\ge4-3x\\\left|2x-1\right|\ge2x-1\end{cases}\)\(\forall x\)
\(\Rightarrow C\ge\left(x+1\right)+\left(4-3x\right)+\left(2x-1\right)+5\)
hay \(C\ge9\)
Dấu "=" xảy ra khi \(\begin{cases}x+1\ge0\\3x-4\le0\\2x-1\ge0\end{cases}\)\(\Rightarrow\begin{cases}x\ge-1\\3x\le4\\2x\ge1\end{cases}\)\(\Rightarrow\begin{cases}x\ge-1\\x\le\frac{3}{4}\\x\ge\frac{1}{2}\end{cases}\)\(\Rightarrow\frac{1}{2}\le x\le\frac{3}{4}\)
Vậy \(C_{Max}=9\) khi \(\frac{1}{2}\le x\le\frac{3}{4}\)
( 3x + 1 ) = ( x - 21 )
x=-11
giair thích rõ giúp mik nha