Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left|0,5x-2\right|-\left|x+\frac{1}{3}\right|=0\)
=> \(\left|0,5x-2\right|=\left|x+\frac{1}{3}\right|\)
=> \(\orbr{\begin{cases}0,5x-2=x+\frac{1}{3}\\0,5x-2=-x-\frac{1}{3}\end{cases}}\)
=> \(\orbr{\begin{cases}-0,5x=\frac{7}{3}\\1,5x=\frac{5}{3}\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{14}{3}\\x=\frac{10}{9}\end{cases}}\)
b) \(2x-\left|x+1\right|=\frac{1}{2}\)
=> \(\left|x+1\right|=2x-\frac{1}{2}\) (Đk: \(2x-\frac{1}{2}\ge0\) <=> \(x\ge\frac{1}{4}\))
=> \(\orbr{\begin{cases}x+1=2x-\frac{1}{2}\\x+1=\frac{1}{2}-2x\end{cases}}\)
=> \(\orbr{\begin{cases}-x=-\frac{3}{2}\\3x=-\frac{1}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{3}{2}\\x=-\frac{1}{6}\end{cases}}\)
a) \(\left(-\frac{3}{4}\right)^{3x-1}=\frac{-27}{64}\)
\(\Leftrightarrow\left(-\frac{3}{4}\right)^{3x-1}=\left(-\frac{3}{4}\right)^3\)
\(\Leftrightarrow3x-1=3\)
\(\Leftrightarrow3x=4\)
\(\Leftrightarrow x=\frac{4}{3}\)
b) Đề sai ! Sửa :
\(\left(\frac{4}{5}\right)^{2x+5}=\frac{256}{625}\)
\(\Leftrightarrow\left(\frac{4}{5}\right)^{2x+5}=\left(\frac{4}{5}\right)^4\)
\(\Leftrightarrow2x+5=4\)
\(\Leftrightarrow2x=-1\)
\(\Leftrightarrow x=-\frac{1}{2}\)
c) \(\frac{\left(x+3\right)^5}{\left(x+5\right)^2}=\frac{64}{27}\)
\(\Leftrightarrow\left(x+3\right)^3=\left(\frac{4}{3}\right)^3\)
\(\Leftrightarrow x+3=\frac{4}{3}\)
\(\Leftrightarrow x=-\frac{5}{3}\)
d) \(\left(x-\frac{2}{15}\right)^3=\frac{8}{125}\)
\(\Leftrightarrow\left(x-\frac{2}{15}\right)^3=\left(\frac{2}{15}\right)^3\)
\(\Leftrightarrow x-\frac{2}{15}=\frac{2}{15}\)
\(\Leftrightarrow x=\frac{4}{15}\)
1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)
=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)
b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c) TT
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)
\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)
=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)
=> \(\left|50x-140\right|=\left|25x+24\right|\)
=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)
Bài 2 : a. |2x - 5| = x + 1
TH1 : 2x - 5 = x + 1
=> 2x - 5 - x = 1
=> 2x - x - 5 = 1
=> 2x - x = 6
=> x = 6
TH2 : -2x + 5 = x + 1
=> -2x + 5 - x = 1
=> -2x - x + 5 = 1
=> -3x = -4
=> x = 4/3
Ba bài còn lại tương tự
a) \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
b)\(\orbr{\begin{cases}3x=0\\2x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)
c)\(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}}\)
d)\(\orbr{\begin{cases}x^2\\x+4=0\end{cases}=0\Rightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}}\)
e)\(\orbr{\begin{cases}\left(x+1\right)^2\\3x-5=0\end{cases}=0}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{3}\end{cases}}\)
g)\(x^2+1=0\Rightarrow x^2=-1\Rightarrow x\in\varphi\)
h)Tương tự các câu trên
i) x = 0
k)\(\left(\frac{3}{4}\right)^x=1=\left(\frac{3}{4}\right)^0\Rightarrow x=0\)
l)\(\left(\frac{2}{5}\right)^{x+1}=\frac{8}{125}=\left(\frac{2}{5}\right)^3\)
=> x + 1 = 3 => x = 2
x.(x+1)=0
suy ra x=0 hoac x+1=0
x=0-1
x=-1
vay x=0 hoac x=-1
mấy câu sau cũng làm tương tự
a) \(5^{3x+1}=25^{x+2}\)
\(\Leftrightarrow5^{3x+1}=\left(5^2\right)^{x+2}\)
\(\Leftrightarrow5^{3x+1}=5^{2x+4}\)
\(\Leftrightarrow3x+1=2x+4\)
\(\Leftrightarrow3x-2x=4-1\)
\(\Leftrightarrow x=3\)
làm tiếp cái trước(ấn nhầm)
\(x=\frac{5}{42}-\frac{15}{28}\)
\(x=\frac{5.4}{6.4.7}-\frac{15.6}{4.7.6}\)
\(x=\frac{20}{168}-\frac{90}{168}\)
\(x=\frac{-70}{168}\)
\(x=\frac{-5}{12}\)
2.
1.
\(\frac{11}{13}-\left(\frac{5}{42}-x\right)=-\left(\frac{15}{28}-\frac{11}{13}\right)\)
\(\frac{11}{13}-\frac{5}{42}+x=-\frac{15}{28}+\frac{11}{13}\)
\(\frac{11}{13}-\frac{11}{13}-\frac{5}{42}+\frac{15}{28}=-x\)
a) \(\left[\frac{2-x}{5}\right]=7\Rightarrow7\le\frac{2-x}{5}< 8\Rightarrow35\le2-x< 40\Rightarrow-35\ge x-2>-40\Rightarrow-33\ge x>-38\)
\(\Rightarrow x\in\left\{-33;-34;-35;-36;-37\right\}\)
b) Vì \(x\in Z\)nên [2x] = 2x ; [3x] = 3x. Vậy : \(2x+3x=5\Leftrightarrow5x=5\Leftrightarrow x=1\)
c) Xét :
\(x\ge6\Rightarrow\hept{\begin{cases}\frac{x}{2}\ge3\\\frac{x}{3}\ge2\end{cases}\Rightarrow\hept{\begin{cases}\left[\frac{x}{2}\right]\ge3\\\left[\frac{x}{3}\right]\ge2\end{cases}\Rightarrow}\left[\frac{x}{2}\right]+\left[\frac{x}{3}\right]\ge5}\)
\(x\le5\Rightarrow\hept{\begin{cases}\frac{x}{2}\le2,5\\\frac{x}{3}\le1,\left(6\right)\end{cases}\Rightarrow\hept{\begin{cases}\left[\frac{x}{2}\right]\le2\\\left[\frac{x}{3}\right]\le1\end{cases}\Rightarrow}\left[\frac{x}{2}\right]+\left[\frac{x}{3}\right]\le3}\)
Vậy giá trị của \(\left[\frac{x}{2}\right]+\left[\frac{x}{3}\right]\)không thể nằm giữa 3 và 5 nên không có giá trị x thỏa mãn pt
d) Xét :
\(x< 0\Rightarrow\frac{5}{x},\frac{6}{x}< 0\Rightarrow\left[\frac{5}{x}\right],\left[\frac{6}{x}\right]< 0\Rightarrow\left[\frac{5}{x}\right]+\left[\frac{6}{x}\right]< 0\)(vô lí)
\(x\ge2\Rightarrow\hept{\begin{cases}\frac{5}{x}\le2,5\\\frac{6}{x}\le3\end{cases}}\Rightarrow\hept{\begin{cases}\left[\frac{5}{x}\right]\le2\\\left[\frac{6}{x}\right]\le3\end{cases}\Rightarrow\left[\frac{5}{x}\right]+\left[\frac{6}{x}\right]\le5}\)(vô lí)
Vậy x = 1
to biet nhung ko tra loi dau