K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2019

3^x-1+5.3^x-1=162

3^x-1.(5+1)     =162

3^x-1.6            =162

3^x-1               =162:6

3^x-1               =27

3^x-1                =3^3

=>x-1=3

     x   =3+1

     x    =4

vậy x=4

                 (2x-1/3)^2=(-1/6)^2

             =>2x-1/3=(-1/6)

                  2x      =(-1/6)+1/3

                  2x       =     1/6

                    x        =1/6:2

                     x        = 1/18

vậy x=1/18

18 tháng 9 2019

1) \(\frac{1}{3}x-\frac{2}{5}=\frac{1}{3}\)

\(\frac{1}{3}x=\frac{1}{3}+\frac{2}{5}\)

\(\frac{1}{3}x=\frac{11}{15}\)

\(x=\frac{11}{15}:\frac{1}{3}\)

\(x=\frac{11}{5}\)

Vậy \(x=\frac{11}{5}.\)

2) \(2,5:7,5=x:\frac{3}{5}\)

\(\frac{5}{2}:\frac{15}{2}=x:\frac{3}{5}\)

\(\frac{1}{3}=x:\frac{3}{5}\)

\(x=\frac{1}{3}.\frac{3}{5}\)

\(x=\frac{1}{5}\)

Vậy \(x=\frac{1}{5}.\)

4) \(\left|x\right|+\left|x+2\right|=0\)

Có: \(\left\{{}\begin{matrix}\left|x\right|\ge0\\\left|x+2\right|\ge0\end{matrix}\right.\forall x.\)

\(\left|x\right|+\left|x+2\right|=0\)

\(\left\{{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)\(\left\{{}\begin{matrix}x=0\\x=0-2\end{matrix}\right.\)\(\left\{{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Vô lí vì \(x\) không thể nhận cùng lúc 2 giá trị khác nhau.

\(x\in\varnothing\)

Vậy không tồn tại giá trị nào của \(x\) thỏa mãn yêu cầu đề bài.

10) \(5-\left|1-2x\right|=3\)

\(\left|1-2x\right|=5-3\)

\(\left|1-2x\right|=2\)

\(\left[{}\begin{matrix}1-2x=2\\1-2x=-2\end{matrix}\right.\)\(\left[{}\begin{matrix}2x=1-2=-1\\2x=1+2=3\end{matrix}\right.\)\(\left[{}\begin{matrix}x=\left(-1\right):2\\x=3:2\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=-\frac{1}{2}\\x=\frac{3}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{-\frac{1}{2};\frac{3}{2}\right\}.\)

Chúc bạn học tốt!

18 tháng 9 2019

9, \(13\frac{1}{3}:1\frac{1}{3}=26:\left(2x-1\right)\)

\(\frac{40}{3}:\frac{4}{3}=26:\left(2x-1\right)\)

\(10=26:\left(2x-1\right)\)

\(2x-1=26:10\)

\(2x-1=2,6\)

\(2x=2,6+1\)

\(2x=3,6\)

\(x=3,6:2\)

\(x=1,8\)

25 tháng 7 2020

\(\frac{1}{3}.3^n+5.3^{n-1}=162\)

<=> \(3^{n-1}+5.3^{n-1}=162\)

<=> \(3^{n-1}\left(1+5\right)=162\)

<=> \(3^{n-1}.6=162\)

<=> \(3^{n-1}=162:6\)

<=> \(3^{n-1}=27\)

<=> \(3^{n-1}=3^3\)

<=> n - 1 = 3

<=> n = 3 + 1 = 4

25 tháng 7 2020

Câu 1

a) Từ gt=>\(\hept{\begin{cases}x-5=1-3x\\x-5=3x-1\end{cases}}\)

<=>\(\hept{\begin{cases}4x=6\\2x=-4\end{cases}}\)

<=>\(\hept{\begin{cases}x=\frac{3}{2}\\x=-2\end{cases}}\)

b) Ta có: \(\hept{\begin{cases}\left(3x-1\right)^{100}\ge0,\forall x\in R\\\left(2y+1\right)^{200}\ge0,\forall x\in R\end{cases}}\)

Kết hợp với đề bài => \(\hept{\begin{cases}3x-1=0\\2y+1=0\end{cases}}\)

=>\(\hept{\begin{cases}x=\frac{1}{3}\\y=-\frac{1}{2}\end{cases}}\)

Bài 2

\(\frac{1}{3}.3^n+5.3^{n-1}=162\)

<=>\(3^{n-1}+5.3^{n-1}=162\)

<=>\(6.3^{n-1}=162\)

<=>\(3^{n-1}=27=3^3\)

<=>\(n-1=3\)

<=>\(n=4\)

10 tháng 11 2016

Bài 1:

\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)

Ta thấy:

\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)

\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\frac{10}{11}=0\)

\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)

 

 

10 tháng 11 2016

Bài 2:

Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)

\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)

16 tháng 8 2019

1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)

=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)

=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)

b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)

=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)

=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)

=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)

c) TT

16 tháng 8 2019

a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)

=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)

=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)

\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)

=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)

=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)

=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)

=> \(\left|50x-140\right|=\left|25x+24\right|\)

=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)

c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)

=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)

Bài 2 : a. |2x - 5| = x + 1

 TH1 : 2x - 5 = x + 1

    => 2x - 5 - x = 1

    => 2x - x - 5 = 1

    => 2x - x = 6

    => x = 6

TH2 : -2x + 5 = x + 1

   => -2x + 5 - x = 1

   => -2x - x + 5 = 1

   => -3x = -4

   => x = 4/3

Ba bài còn lại tương tự

8 tháng 10 2019

a, \(-\frac{5}{7}-\left(\frac{1}{2}-x\right)=-\frac{11}{4}\)

\(\frac{1}{2}-x=\frac{57}{28}\)

\(x=-\frac{43}{28}\)

b, \(\left(2x-1\right)^2-5=20\)

\(\Rightarrow\left(2x-1\right)^2=25\)

\(\Rightarrow2x-1=\pm5\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

8 tháng 10 2019

b, \(\left(2x-1\right)^2-5=20\)

\(\Rightarrow\left(2x-1\right)^2=25\)

\(\Rightarrow\left(2x-1\right)^2=5^2\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=6\\2x-1=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=7\\2x=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=-\frac{5}{2}\end{matrix}\right.\)

Vậy ...

8 tháng 10 2019

a) \(-\frac{5}{7}-\left(\frac{1}{2}-x\right)=\frac{-11}{4}\)

\(\Rightarrow\left(\frac{1}{2}-x\right)=\left(-\frac{5}{7}\right)+\frac{11}{4}\)

\(\Rightarrow\frac{1}{2}-x=\frac{57}{28}\)

\(\Rightarrow x=\frac{1}{2}-\frac{57}{28}\)

\(\Rightarrow x=-\frac{43}{28}\)

Vậy \(x=-\frac{43}{28}.\)

b) \(\left(2x-1\right)^2-5=20\)

\(\Rightarrow\left(2x-1\right)^2=20+5\)

\(\Rightarrow\left(2x-1\right)^2=25\)

\(\Rightarrow2x-1=\pm5\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=5+1=6\\2x=\left(-5\right)+1=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6:2\\x=\left(-4\right):2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy \(x\in\left\{3;-2\right\}.\)

d) \(\frac{x-6}{4}=\frac{4}{x-6}\)

\(\Rightarrow\left(x-6\right).\left(x-6\right)=4.4\)

\(\Rightarrow\left(x-6\right).\left(x-6\right)=16\)

\(\Rightarrow\left(x-6\right)^2=16\)

\(\Rightarrow x-6=\pm4\)

\(\Rightarrow\left[{}\begin{matrix}x-6=4\\x-6=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4+6\\x=\left(-4\right)+6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10\\x=2\end{matrix}\right.\)

Vậy \(x\in\left\{10;2\right\}.\)

Chúc bạn học tốt!