\(\ge7\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2016

Ta có :

\(\left|3-5x\right|\ge7\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}3-5x\ge7\\5x-3\ge7\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}-5x\ge4\\5x\ge10\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x\le-\frac{4}{5}\\x\ge2\end{array}\right.\)

Vậy ........

12 tháng 11 2016

|3-5x|>=7

=>3-5x >=7 hoặc 3-5x>=-7

Xét tiếp...

18 tháng 9 2018

a,x2+6x-7=0

=>x2+7x-x-7=0

=>(x^2+7x)-(x+7)=0

=>x(x+7)-(x+7)=0 =>(x+7)(x-1)=0

=>\(\orbr{\begin{cases}x+7=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-7\\x=1\end{cases}}}\)

b, x^3-2x^2-5x+6=0

=>x(x^2-2x-5+6)=0

=>x(x^2-2x+1)=0\(^{\orbr{\begin{cases}x=0\\\left(x-1^2\right)=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)

c, 2x^2-5x+3=0

=>2x^2-2x-3x+3=0

18 tháng 9 2018

\(x^3-19x-30=0\)

\(\Rightarrow x^3+5x^2+6x-5x^2-25x-30=0\)

\(\Rightarrow\left(x-5\right)\left(x^2+5x+6\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x^2+2x+3x+6\right)=0\)

\(\Rightarrow\left(x-5\right)[x\left(x+2\right)+3\left(x+2\right)]=0\)

\(\Rightarrow\left(x-5\right)\left(x+3\right)\left(x+2\right)=0\)

\(\Rightarrow\hept{\begin{cases}x-5=0\\x+3=0\\x+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\x=-3\\x=-2\end{cases}}\)

17 tháng 2 2016

thay x =7 ; y =4  => S =\(11\frac{11}{28}\)

17 tháng 2 2016

Tại sao lại thay như vậy

18 tháng 8 2020

1) x2 - 7x =  0

=> x(x - 7) = 0

=> \(\orbr{\begin{cases}x=0\\x=7\end{cases}}\)

2) -3x2 + 5x = 0

=> x(-3x + 5) = 0

=> \(\orbr{\begin{cases}x=0\\-3x+5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{3}\end{cases}}\)

3) x2 - 19x - 20 = 0

=> x2 - 20x + x - 20 = 0

=> x(x - 20) + (x - 20) = 0

=> (x + 1)(x - 20) = 0

=> \(\orbr{\begin{cases}x+1=0\\x-20=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=20\end{cases}}\)

4) x2 - 5x - 24 = 0

=> x2 - 8x + 3x - 24 = 0

=> x(x - 8) + 3(x - 8) = 0

=> (x + 3)(x - 8) = 0

=> \(\orbr{\begin{cases}x+3=0\\x-8=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=8\end{cases}}\)

20 tháng 8 2020

1) x2 - 7x = 0

<=> x( x - 7 ) = 0

<=> \(\orbr{\begin{cases}x=0\\x=7\end{cases}}\)

2) -3x2 + 5x = 0

<=> x( -3x + 5 ) = 0

<=> \(\orbr{\begin{cases}x=0\\x=\frac{5}{3}\end{cases}}\)

3) x2 - 19x - 20 = 0

<=> x2 + x - 20x - 20 = 0

<=> x( x + 1 ) - 20( x + 1 ) = 0

<=> ( x - 20 )( x + 1 ) = 0

<=> \(\orbr{\begin{cases}x=20\\x=-1\end{cases}}\)

4) x2 - 5x - 24 = 0

<=> x2 + 3x - 8x - 24 = 0

<=> x( x + 3 ) - 8( x + 3 ) = 0

<=> ( x - 8 )( x + 3 ) = 0

<=> \(\orbr{\begin{cases}x=8\\x=-3\end{cases}}\)

23 tháng 5 2017

a, x2- 2x -3 = 0

\(\Leftrightarrow\) x2 + x - 3x - 3 =0 \(\Leftrightarrow\) x(x+1) - 3(x+1) = 0

\(\Leftrightarrow\) (x+1)(x-3) = 0

\(\Leftrightarrow\) x+1 = 0 hoặc x - 3 =0

1, x+1 = 0 \(\Leftrightarrow\) x = -1 2, x-3 = 0 \(\Leftrightarrow\) x = 3

b, \(2x^2+5x-3=0\)

\(\Leftrightarrow\)\(2x^2-x+6x-3=0\)

\(\Leftrightarrow x\left(2x-1\right)+3\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\) 2x - 1 = 0 hoặc x + 3 = 0

1, 2x -1 = 0 \(\Leftrightarrow x=\dfrac{1}{2}\) 2, x + 3 = 0 \(\Leftrightarrow x=-3\)

24 tháng 3 2018

a) x \(\in\) {2;1;0; -1; -2}

b) x \(\in\) {...; -10; -9; 9;10;...}

c) x \(\in\) {-1; -2; -3; -4; 0; 1; 2;3;4}

d) x \(\in\) {...; -9; -8; -7; 7;8;9;...}

haha

1 tháng 4 2018

a. Ta có: |x| < 3 ⇔ -3 < x < 3

Các giá trị trong tập hợp A là nghiệm của bất phương trình là:

-2; -1; 0; 1; 2

b. Ta có: |x| > 8 ⇔ x > 8 hoặc x < -8

Các giá trị trong tập hợp A là nghiệm của bất phương trình là:

-10; -9; 9; 10

c. Ta có: |x| ≤ 4 ⇔ -4 ≤ x ≤ 4

Các số trong tập hợp A là nghiệm của bất phương trình là:

-4; -3; -2; -1; 0; 1; 2; 3; 4

d. Ta có: |x| ≥ 7 ⇔ x ≥ 7 hoặc x ≤ -7

Các số trong tập hợp A là nghiệm của bất phương trình là:

-10; -9; -8; -7; 7; 8; 9; 10

7 tháng 5 2017

a) \(x+5x^2=0\)

<=>\(x\left(1+5x\right)=0\)

+) \(x=0\) (TM)

+)\(1+5x=0\)

<=>\(5x=-1\)

<=>\(x=\dfrac{-1}{5}\) (TM)

Vậy \(x\) có 2 giá trị: \(x=\dfrac{-1}{5}\); \(x=0\)

b)\(x+1=\left(x+1\right)^2\)

<=>\(x+1-\left(x+1\right)^2=0\)

<=>\(\left(x+1\right)\left(1-x-1\right)=0\)

<=>\(\left(x+1\right)\left(-x\right)=0\)

+)\(x+1=0\)

<=>\(x=-1\) (TM)

+)\(-x=0\)

<=>\(x=0\) (TM)

Vậy \(x\) có 2 giá trị : \(x=-1\); \(x=0\)

c) \(x^3+x=0\)

<=> \(x\left(x^2+1\right)=0\)

+) \(x=0\) (TM)

+) \(x^2+1=0\)

<=>\(x^2=-1\)

Ta có: \(x^2\) >= 0, \(-1< 0\). Mà vế trái = vế phải

=> \(x^2=-1\) ( Vô nghiệm)

Vậy \(x=0\)

29 tháng 5 2017

a) \(x+5x^2=0\)

\(x\left(1+5x\right)=0\)

\(\Leftrightarrow x=0\) hoặc \(1+5x=0\)

\(\Leftrightarrow x=0\) hoặc \(x=\dfrac{-1}{5}\)

b) \(x+1=\left(x+1\right)^2\)

\(\Leftrightarrow x+1-\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(x+1\right)\left[1-\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(1-x-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)-x=0\)

\(\Leftrightarrow x+1=0\) hoặc \(-x=0\)

\(\Leftrightarrow x=-1\) hoặc \(x=0\)

11 tháng 6 2018

a) 2x2 - 6x - 2x2 - 3x = 18

-9x = 18

x = -2

b) 5x3 - 2x + 5x - 5x3 = 34

3x = 81

x = 27 

11 tháng 6 2018

a,\(2x\left(x-3\right)-x\left(2x+3\right)=18\)

\(\Leftrightarrow2x^2-6x-2x^2-3x=18\)

\(\Leftrightarrow-9x=18\)

\(\Leftrightarrow x=-2\)

Tập nghiệm của pt đã cho là {-2}

\(\Leftrightarrow x\left(5x^2-2\right)+5x\left(1-x^2\right)=3^4\)

\(\Leftrightarrow5x^3-2x+5x-5x^3=81\)

<=>3x=81

<=>x=27

Tập nghiệm của pt đã cho là {27}

29 tháng 10 2016

a)5x(x-2)+3x-6=0

5x(x-2)+3(x-2)=0

(5x+3)(x-2)=0

=> 5x+3=0  hoặc   x-2=0

5x=-3                    x=0+2

x=-3/5                   x=2

Vậy x=-3/5  hoặc  x=2

b)x3-9x=0

x(x2-9)=0

=>x=0  hoặc  x2-9=0

                     x2=9

                 =>x=3 hoặc x=-3

Vậy x=0 hoặc x=3 hoặc x=-3

29 tháng 10 2016

a) 5x(x - 2) + 3x - 6 = 5x(x - 2) + 3(x - 2) = (5x + 3)(x - 2) = 0 =>\(\orbr{\begin{cases}5x+3=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-0,6\\x=2\end{cases}}}\)

b) x3 - 9x = x(x2 - 9) = x(x - 3)(x + 3) => x = 0 hoặc x - 3 = 0 hay x + 3 = 0 =>\(x\in\left\{-3;0;3\right\}\)