K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 9 2020

Bài 3:

Áp dụng các hằng đẳng thức đáng nhớ ta có:

$C=a^4+b^4=(a^2+b^2)^2-2a^2b^2$

$=[(a+b)^2-2ab]^2-2(ab)^2$

$=(8^2-2.15)^2-2.15^2=706$

AH
Akai Haruma
Giáo viên
30 tháng 9 2020

Bài 2:

a)

$D=-x^2+6x-11=-11-(x^2-6x)=-2-(x^2-6x+9)$

$=-2-(x-3)^2$

Vì $(x-3)^2\geq 0$ với mọi $x$ nên $D=-2-(x-3)^2\leq -2$

Vậy GTLN của $D$ là $-2$ khi $(x-3)^2=0\Leftrightarrow x=3$
b)

$F=4x-x^2+1=1-(x^2-4x)=5-(x^2-4x+4)=5-(x-2)^2$

$\leq 5-0=5$

Vậy $F_{\max}=5$. Giá trị này được khi $(x-2)^2=0\leftrightarrow x=2$

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

27 tháng 4 2017

Hỏi đáp Toán

10 tháng 5 2017

1) X=log1-log2+log2-log3+...+log99-log100

=log1-log100

=0-2

=-2

Đáp án C

2)X=-log3100=-log3102=-2log3(2.5)=-2log32-2log35=-2a-2b

Đáp án A

1 tập nghiệm S của bất pt \(4^{x+\frac{1}{2}}-5.2^x+2\le0\) A S=\(\left\{-1;1\right\}\) B=[-1;1] C S= \(\) ( \(-\infty;-1\)] \(\cup\) [\(1;+\infty\) ) D S=(-1;1) 2 Tập nghiệm của bất pt \(log_6\left[x.\left(5-x\right)\right]< 1\) A (0;2)\(\cup\) (3;5) B (2;3) C (0;5)\\(\left\{2;3\right\}\) D (0;3) \(\cup\) (3;5) 3 tập nghiệm của bất pt...
Đọc tiếp

1 tập nghiệm S của bất pt \(4^{x+\frac{1}{2}}-5.2^x+2\le0\)

A S=\(\left\{-1;1\right\}\) B=[-1;1] C S= \(\) ( \(-\infty;-1\)] \(\cup\) [\(1;+\infty\) ) D S=(-1;1)

2 Tập nghiệm của bất pt \(log_6\left[x.\left(5-x\right)\right]< 1\)

A (0;2)\(\cup\) (3;5) B (2;3) C (0;5)\\(\left\{2;3\right\}\) D (0;3) \(\cup\) (3;5)

3 tập nghiệm của bất pt \(\left(\sqrt{6}-\sqrt{5}\right)^{x-1}\ge\left(\sqrt{6}+\sqrt{5}\right)^{2x-5}\)

4 tập nghiệm của bất pt \(\left(\frac{1}{3}\right)^{\sqrt{x+2}}>3^{-x}\)

A (2;+\(\infty\)) B (1;2) C (1;2] D [2;\(+\infty\) )

5 Giai bất pt \(\left(\frac{3}{4}\right)^{2x-1}\le\left(\frac{4}{3}\right)^{-2x+x}\)

A X\(\ge\)1 B X<1 C X\(\le\) 1 D x>1

6 bất pt \(log_4\left(x+7\right)>log_2\left(x+1\right)\) có tập nghiệm là

A (5;\(+\infty\) ) B (-1;2) C (2;4) D (-3;2)

7 Tìm số nghiệm nguyên dương của bất pt \(\left(\frac{1}{5}\right)^{x^2-2x}\ge\frac{1}{125}\)

8 f(x)=\(x.e^{-3x}\) . tập nghiệm của bất pt \(f^,\) (x)>0

A (0;1/3) B (0;1) C \(\left(\frac{1}{3};+\infty\right)\) D \(\left(-\infty;\frac{1}{3}\right)\)

9 biết S =[a,b] là tập nghiệm của bất pt \(3.9^x-10.3^x+3\le0\) . Tìm T=b-a

10 TẬP nghiệm của bất pt \(log_{\frac{1}{3}}\frac{1-2x}{x}>0\)

11 có bao nhiêu nghiệm âm lớn hơn -2021 của bất pt \(\left(2-\sqrt{3}\right)^x>\left(2+\sqrt{3}\right)^{x+2}\)

A 2019 B 2020 C 2021 D 2018

12 Biết tập nghiệm S của bất pt \(log_{\frac{\pi}{6}}\left[log_3\left(x-2\right)\right]>0\) là khoảng (a,b) . Tính b-a

13 tập nghiệm của bất pt \(16^x-5.4^x+4\ge0\)

14 nếu \(log_ab=p\)\(log_aa^2.b^4\)bằng

A 4p+2 B 4p+2a c \(a^2+p^4\) D \(p^4+2a\)

15 cho a,b là số thực dương khác 1 thỏa \(log_{a^2}b+log_{b^2}a=1\) mệnh đề nào đúng

A a=\(\frac{1}{b}\) B a=b C a=\(\frac{1}{b^2}\) D a=\(b^2\)

16 đặt \(2^a=\)3 , khi đó \(log_3\sqrt[3]{16}\) bằng

6
NV
2 tháng 7 2020

14.

\(log_aa^2b^4=log_aa^2+log_ab^4=2+4log_ab=2+4p\)

15.

\(\frac{1}{2}log_ab+\frac{1}{2}log_ba=1\)

\(\Leftrightarrow log_ab+\frac{1}{log_ab}=2\)

\(\Leftrightarrow log_a^2b-2log_ab+1=0\)

\(\Leftrightarrow\left(log_ab-1\right)^2=0\)

\(\Rightarrow log_ab=1\Rightarrow a=b\)

16.

\(2^a=3\Rightarrow log_32^a=1\Rightarrow log_32=\frac{1}{a}\)

\(log_3\sqrt[3]{16}=log_32^{\frac{4}{3}}=\frac{4}{3}log_32=\frac{4}{3a}\)

NV
2 tháng 7 2020

11.

\(\Leftrightarrow1>\left(2+\sqrt{3}\right)^x\left(2+\sqrt{3}\right)^{x+2}\)

\(\Leftrightarrow\left(2+\sqrt{3}\right)^{2x+2}< 1\)

\(\Leftrightarrow2x+2< 0\Rightarrow x< -1\)

\(\Rightarrow\)\(-2+2020+1=2019\) nghiệm

12.

\(\Leftrightarrow\left\{{}\begin{matrix}x-2>0\\0< log_3\left(x-2\right)< 1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\1< x-2< 3\end{matrix}\right.\)

\(\Rightarrow3< x< 5\Rightarrow b-a=2\)

13.

\(4^x=t>0\Rightarrow t^2-5t+4\ge0\)

\(\Rightarrow\left[{}\begin{matrix}t\le1\\t\ge4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}4^x\le1\\4^x\ge4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x\le0\\x\ge1\end{matrix}\right.\)

NV
23 tháng 1 2019

a/ \(I=\int\limits^1_0\dfrac{1}{\left(x^2+3\right)\left(x^2+1\right)}dx=\dfrac{1}{2}\int\limits^1_0\left(\dfrac{1}{x^2+1}-\dfrac{1}{x^2+3}\right)dx\)

\(=\dfrac{1}{2}\left(arctanx-\dfrac{1}{\sqrt{3}}arctan\dfrac{x}{\sqrt{3}}\right)|^1_0=\dfrac{\pi}{8}-\dfrac{\pi\sqrt{3}}{36}\)

b/ \(I=\int\dfrac{x^2-1}{x^4+1}dx=\int\dfrac{1-\dfrac{1}{x^2}}{x^2+\dfrac{1}{x^2}}dx\)

Đặt \(x+\dfrac{1}{x}=t\Rightarrow\left(1-\dfrac{1}{x^2}\right)dx=dt\) ; \(x^2+\dfrac{1}{x^2}=t^2-2\)

\(\Rightarrow I=\int\dfrac{dt}{t^2-2}=\int\dfrac{dt}{\left(t-\sqrt{2}\right)\left(t+\sqrt{2}\right)}=\dfrac{1}{2\sqrt{2}}\int\left(\dfrac{1}{t-\sqrt{2}}-\dfrac{1}{t+\sqrt{2}}\right)dt\)

\(\Rightarrow I=\dfrac{1}{2\sqrt{2}}ln\left|\dfrac{t-\sqrt{2}}{t+\sqrt{2}}\right|+C=\dfrac{1}{2\sqrt{2}}ln\left|\dfrac{x^2-\sqrt{2}x+1}{x^2+\sqrt{2}x+1}\right|+C\)

c/ \(I=\int\dfrac{dx}{x\left(x^3+1\right)}=\int\dfrac{x^2dx}{x^3\left(x^3+1\right)}\)

Đặt \(x^3+1=t\Rightarrow3x^2dx=dt\)

\(\Rightarrow I=\dfrac{1}{3}\int\dfrac{dt}{\left(t-1\right)t}=\dfrac{1}{3}\int\left(\dfrac{1}{t-1}-\dfrac{1}{t}\right)dt=\dfrac{1}{3}ln\left|\dfrac{t-1}{t}\right|+C\)

\(\Rightarrow I=\dfrac{1}{3}ln\left|\dfrac{x^3}{x^3+1}\right|+C\)

d/ \(I=\int\limits^1_0\dfrac{xdx}{x^4+x^2+1}\)

Đặt \(x^2=t\Rightarrow2xdx=dt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=1\Rightarrow t=1\end{matrix}\right.\)

\(I=\dfrac{1}{2}\int\limits^1_0\dfrac{dt}{t^2+t+1}=\dfrac{1}{2}\int\limits^1_0\dfrac{dt}{\left(t+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}=\dfrac{2}{3}\int\limits^1_0\dfrac{dt}{\dfrac{4}{3}\left(t+\dfrac{1}{2}\right)^2+1}\)

Đặt \(t+\dfrac{1}{2}=\dfrac{\sqrt{3}}{2}tanu\Rightarrow dt=\dfrac{\sqrt{3}}{2}.\dfrac{du}{cos^2u}\); \(\left\{{}\begin{matrix}t=0\Rightarrow u=\dfrac{\pi}{6}\\t=1\Rightarrow u=\dfrac{\pi}{3}\end{matrix}\right.\)

\(\Rightarrow I=\dfrac{2}{3}.\dfrac{\sqrt{3}}{2}\int\limits^{\dfrac{\pi}{3}}_{\dfrac{\pi}{6}}\dfrac{du}{cos^2u\left(tan^2u+1\right)}=\dfrac{\sqrt{3}}{3}\int\limits^{\dfrac{\pi}{3}}_{\dfrac{\pi}{6}}du=\dfrac{\pi\sqrt{3}}{18}\)

22 tháng 1 2019

giup minh voi

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit