
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1) \(\frac{1}{3}x-\frac{2}{5}=\frac{1}{3}\)
⇒ \(\frac{1}{3}x=\frac{1}{3}+\frac{2}{5}\)
⇒ \(\frac{1}{3}x=\frac{11}{15}\)
⇒ \(x=\frac{11}{15}:\frac{1}{3}\)
⇒ \(x=\frac{11}{5}\)
Vậy \(x=\frac{11}{5}.\)
2) \(2,5:7,5=x:\frac{3}{5}\)
⇒ \(\frac{5}{2}:\frac{15}{2}=x:\frac{3}{5}\)
⇒ \(\frac{1}{3}=x:\frac{3}{5}\)
⇒ \(x=\frac{1}{3}.\frac{3}{5}\)
⇒ \(x=\frac{1}{5}\)
Vậy \(x=\frac{1}{5}.\)
4) \(\left|x\right|+\left|x+2\right|=0\)
Có: \(\left\{{}\begin{matrix}\left|x\right|\ge0\\\left|x+2\right|\ge0\end{matrix}\right.\forall x.\)
⇒ \(\left|x\right|+\left|x+2\right|=0\)
⇒ \(\left\{{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=0\\x=0-2\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vô lí vì \(x\) không thể nhận cùng lúc 2 giá trị khác nhau.
⇒ \(x\in\varnothing\)
Vậy không tồn tại giá trị nào của \(x\) thỏa mãn yêu cầu đề bài.
10) \(5-\left|1-2x\right|=3\)
⇒ \(\left|1-2x\right|=5-3\)
⇒ \(\left|1-2x\right|=2\)
⇒ \(\left[{}\begin{matrix}1-2x=2\\1-2x=-2\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}2x=1-2=-1\\2x=1+2=3\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=\left(-1\right):2\\x=3:2\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=-\frac{1}{2}\\x=\frac{3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{-\frac{1}{2};\frac{3}{2}\right\}.\)
Chúc bạn học tốt!
9, \(13\frac{1}{3}:1\frac{1}{3}=26:\left(2x-1\right)\)
\(\frac{40}{3}:\frac{4}{3}=26:\left(2x-1\right)\)
\(10=26:\left(2x-1\right)\)
\(2x-1=26:10\)
\(2x-1=2,6\)
\(2x=2,6+1\)
\(2x=3,6\)
\(x=3,6:2\)
\(x=1,8\)

a, \(-\frac{5}{7}-\left(\frac{1}{2}-x\right)=-\frac{11}{4}\)
\(\frac{1}{2}-x=\frac{57}{28}\)
\(x=-\frac{43}{28}\)
b, \(\left(2x-1\right)^2-5=20\)
\(\Rightarrow\left(2x-1\right)^2=25\)
\(\Rightarrow2x-1=\pm5\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

b, \(\left(2x-1\right)^2-5=20\)
\(\Rightarrow\left(2x-1\right)^2=25\)
\(\Rightarrow\left(2x-1\right)^2=5^2\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=6\\2x-1=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=7\\2x=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy ...
a) \(-\frac{5}{7}-\left(\frac{1}{2}-x\right)=\frac{-11}{4}\)
\(\Rightarrow\left(\frac{1}{2}-x\right)=\left(-\frac{5}{7}\right)+\frac{11}{4}\)
\(\Rightarrow\frac{1}{2}-x=\frac{57}{28}\)
\(\Rightarrow x=\frac{1}{2}-\frac{57}{28}\)
\(\Rightarrow x=-\frac{43}{28}\)
Vậy \(x=-\frac{43}{28}.\)
b) \(\left(2x-1\right)^2-5=20\)
\(\Rightarrow\left(2x-1\right)^2=20+5\)
\(\Rightarrow\left(2x-1\right)^2=25\)
\(\Rightarrow2x-1=\pm5\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=5+1=6\\2x=\left(-5\right)+1=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6:2\\x=\left(-4\right):2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{3;-2\right\}.\)
d) \(\frac{x-6}{4}=\frac{4}{x-6}\)
\(\Rightarrow\left(x-6\right).\left(x-6\right)=4.4\)
\(\Rightarrow\left(x-6\right).\left(x-6\right)=16\)
\(\Rightarrow\left(x-6\right)^2=16\)
\(\Rightarrow x-6=\pm4\)
\(\Rightarrow\left[{}\begin{matrix}x-6=4\\x-6=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4+6\\x=\left(-4\right)+6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10\\x=2\end{matrix}\right.\)
Vậy \(x\in\left\{10;2\right\}.\)
Chúc bạn học tốt!

a, \(\frac{3}{5}\left(2x-\frac{1}{3}\right)+\frac{4}{15}=\frac{12}{30}\)
\(\Leftrightarrow\frac{3}{5}\left(2x-\frac{1}{3}\right)=\frac{2}{15}\)
\(\Leftrightarrow2x-\frac{1}{3}=\frac{2}{9}\)
\(\Leftrightarrow2x=\frac{5}{9}\)
\(\Leftrightarrow x=\frac{5}{18}\)
b,\(\left(-0,2\right)^x=\frac{1}{25}\)
\(\Leftrightarrow\left(\frac{-1}{5}\right)^x=\left(\frac{-1}{5}\right)^2\)
\(\Leftrightarrow x=2\)
c,\(\left|x-1\right|-\frac{3}{12}=\left(-\frac{1}{2}\right)^2\)
\(\Leftrightarrow\left|x-1\right|-\frac{3}{12}=\frac{1}{4}\)
\(\Leftrightarrow\left|x-1\right|=\frac{1}{2}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=\frac{1}{2}\\x-1=-\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{2}\end{cases}}\)
\(a,\frac{3}{5}\left(2x-\frac{1}{3}\right)=\frac{12}{30}-\frac{4}{15}\)
\(\frac{3}{5}\left(2x-\frac{1}{3}\right)=\frac{2}{15}\)
\(2x-\frac{1}{3}=\frac{2}{9}\)
\(x=\frac{5}{18}\)
\(b,\left(-0,2\right)^x=\frac{1}{25}\)
\(\left(-0,2\right)^x=\left(-\frac{1}{5}\right)^2\)
\(\left(-0,2\right)^x=\left(-0,2\right)^2\)
\(x=2\)
c,/x-1/=1/2
Nếu
\(x-1\ge0\)
\(x\ge1\)
suy ra x-1=1/2
x=3/2(thỏa mãn điều kiện )
nếu \(x-1\le0\)
\(x\le1\)
suy ra x-1=-1/2
x=1/2 (thỏa mãn điều kiện )
Vậy ...
nha !!!

a) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.........+\frac{2}{x\left(x+1\right)}=\frac{1998}{2000}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+.......+\frac{2}{x\left(x+1\right)}=\frac{1998}{2000}\)
\(\Leftrightarrow2.\left[\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+......+\frac{1}{x\left(x+1\right)}\right]=\frac{1998}{2000}\)
\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{x\left(x+1\right)}=\frac{999}{2000}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+......+\frac{1}{x}-\frac{1}{x+1}=\frac{999}{2000}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{999}{2000}\)\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2000}\)
\(\Leftrightarrow x+1=2000\)\(\Leftrightarrow x=1999\)
Vậy \(x=1999\)
b) \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+......+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
\(\Leftrightarrow\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+.....+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{15.2}{93}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+......+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\Leftrightarrow\frac{1}{2x+3}=\frac{1}{93}\)\(\Leftrightarrow2x+3=93\)
\(\Leftrightarrow2x=90\)\(\Leftrightarrow x=45\)
Vậy \(x=45\)

a) \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
b)\(\orbr{\begin{cases}3x=0\\2x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)
c)\(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}}\)
d)\(\orbr{\begin{cases}x^2\\x+4=0\end{cases}=0\Rightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}}\)
e)\(\orbr{\begin{cases}\left(x+1\right)^2\\3x-5=0\end{cases}=0}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{3}\end{cases}}\)
g)\(x^2+1=0\Rightarrow x^2=-1\Rightarrow x\in\varphi\)
h)Tương tự các câu trên
i) x = 0
k)\(\left(\frac{3}{4}\right)^x=1=\left(\frac{3}{4}\right)^0\Rightarrow x=0\)
l)\(\left(\frac{2}{5}\right)^{x+1}=\frac{8}{125}=\left(\frac{2}{5}\right)^3\)
=> x + 1 = 3 => x = 2
x.(x+1)=0
suy ra x=0 hoac x+1=0
x=0-1
x=-1
vay x=0 hoac x=-1
mấy câu sau cũng làm tương tự
\(-2x+\left|\frac{1}{2}x-x\right|-1=3\)
\(\Leftrightarrow\left|\frac{-1}{2}x\right|=4+2x\)(1)
Điều kiện : \(4+2x\ge0\Leftrightarrow x\ge-2\)
\(\left(1\right)\Rightarrow\orbr{\begin{cases}-\frac{1}{2}x=4+2x\\\frac{1}{2}x=4+2x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-\frac{5}{2}x=4\\-\frac{3}{2}x=4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{8}{5}\left(tm\right)\\x=-\frac{8}{3}\left(ktm\right)\end{cases}}}\)
Vậy x = -8/5
\(-2x+\left|\frac{1}{2}x-x\right|-1=3\)
\(\Leftrightarrow\left|\frac{1}{2}x-x\right|=3+2x+1\)
\(\Leftrightarrow\left|\frac{1}{2}x-x\right|=2x+4\)
\(\Leftrightarrow\frac{1}{2}x-x\ge0\text{ cho }x\le0\Rightarrow x\le0\Rightarrow\left|\frac{1}{2}x-x\right|=\frac{1}{2}x-x\)
\(\Leftrightarrow\frac{1}{2}x-x< 0\text{ cho }x>0\Rightarrow x>0\Rightarrow\left|\frac{1}{2}x-x\right|=-\left(\frac{1}{2}x-x\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x< 0\\x\ge0\end{cases}}\)
\(\Leftrightarrow-2x+\frac{1}{2}x-x-1=3\)
\(\Leftrightarrow-\frac{8}{5}\)
\(\Leftrightarrow-2x-\left(\frac{1}{2}x-x\right)-1=3\)
\(\Leftrightarrow-\frac{8}{3}\)
\(\Leftrightarrow\orbr{\begin{cases}x< 0=-\frac{8}{5}\left(tm\right)\\x\ge0=-\frac{8}{3}\left(\text{loại}\right)\end{cases}}\)
\(\Rightarrow x=-\frac{8}{5}\)