Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
8x2+30x+7=0
8x2+16x+14x+7=0
8x(x+2) +7(x+2)=0
(8x+7)(x+2)=0
=>\(\orbr{\begin{cases}8x+7=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{7}{8}\\x=-2\end{cases}}}\)
a) (2x+3)(4x2-6x+9)-2(4x3-1)+(8x-1)=15
<=>8x3+27-8x3+2+8x-1=15
<=>8x+28=15
<=>8x=-13
<=>x=-13/8
b) (x+3)3-(x+9)(x2+27)-(5x-216) = 3x-4
<=>x3+9x2+27x+27-x3-27x-9x2-243-5x+216=3x-4
<=>-5x=3x-4
<=>8x=4
<=>x=1/2
( 4x - 1 )3 + ( 3 - 4x )( 9 + 12x + 16x2 ) = ( 8x - 1 )( 8x + 1 ) - ( 3x - 5 )
<=> 64x3 - 48x2 + 12x - 1 + [ 33 - ( 4x )3 ] = ( 8x )2 - 1 - 3x + 5
<=> 64x3 - 48x2 + 12x - 1 + 27 - 64x3 = 64x2 - 3x + 4
<=> -48x2 + 12x + 26 = 64x2 - 3x + 4
<=> -48x2 + 12x + 26 - 64x2 + 3x - 4 = 0
<=> -112x2 + 15x + 22 = 0 (*)
\(\Delta=b^2-4ac=15^2-4\cdot\left(-112\right)\cdot22=225+9856=10081\)
\(\Delta>0\)nên (*) có hai nghiệm phân biệt
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{\sqrt{10081}-15}{-224}\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-15-\sqrt{10081}}{-224}\end{cases}}\)
Lớp 8 sao nghiệm xấu thế -..-
Bài 1:tìm x ,biết:
a) (2x - 1)(3x + 2) - 6x(x + 1) = 0
\(\Leftrightarrow6x^2+x-2-6x^2-6x=0\)
\(\Leftrightarrow-5x=2\)
\(\Leftrightarrow x=\frac{-2}{5}\)
b) \(\left(4x-1\right)^2-\left(2x+1\right)\left(8x-3\right)=0\)
\(\Leftrightarrow16x^2-8x+1-16x^2-2x+3=0\)
\(\Leftrightarrow-10x=-4\)
\(\Leftrightarrow x=\frac{2}{5}\)
c) \(4x^2-1=2\left(2x+1\right)\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-1\right)-2\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{3}{2}\end{cases}}\)
2a) \(4x^2-9y^2-6y-1=4x^2-\left(3y+1\right)^2\)
\(=\left(2x-3y-1\right)\left(2x+3y+1\right)\)
b) \(4x^2-1-2x\left(2x-1\right)=\left(2x-1\right)\left(2x+1\right)-2x\left(2x-1\right)\)
\(=1.\left(2x-1\right)\)
c) \(x^2-8x-4y^2+16=\left(x-4\right)^2-4y^2\)
\(=\left(x-4-2y\right)\left(x-4+2y\right)\)
d) \(9x^2-12x-y^2+4=\left(3x-2\right)^2-y^2\)
\(=\left(3x-2-y\right)\left(3x-2+y\right)\)
e) \(4x^2+10x-5=4x^2+2.2.\frac{5}{2}x+\frac{25}{4}-\frac{25}{4}-5\)
\(=\left(2x+\frac{5}{2}\right)^2-\frac{45}{4}\)
\(=\left(2x+\frac{5+3\sqrt{5}}{2}\right)\left(2x+\frac{5-3\sqrt{5}}{2}\right)\)
\(a.\left(x+1\right)\left(x^2-x+1\right)-x\left(x^2-5\right)=71\)
\(\Leftrightarrow x^3+1-x^3+5x=71\)
\(\Leftrightarrow5x=71-1\)
\(\Leftrightarrow5x=70\)
\(\Leftrightarrow x=70:5=14\)
\(b.\left(2x-3\right)^3-8x\left(x-1\right)^2+4x\left(4x+1\right)+27=0\)
\(\Leftrightarrow8x^3-12x^2+18x-27-8x\left(x^2-2x+1\right)+16x^2+4x+27=0\)
\(\Leftrightarrow8x^3-12x^2+18x-27-8x^3+16x^2-8x+16x^2+4x+27=0\)
\(\Leftrightarrow20x^2+14x=0\)
\(\Leftrightarrow x\left(20x+14\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\20x+14=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{7}{10}\end{cases}}}\)
a) ta có: (x+1)(x^2 -x+1) -x(x^2 -5)=71
<=>x^3 +1 -x^3 +5x=71
<=>5x=70
<=>x=14
b) ta có:(2x-3)^3 -8x(x-1)^2 +4x(4x+1)+27=0
<=>[ (2x-3)^3 +27)] - [ 8x(x-1)^2 -4x(4x+1)]=0
<=> (2x-3+3)[ (2x-3)^2 - (2x-3).3 +3^2] - 2x [ 4(x^2 -2x +1) -2(4x+1)]=0
<=>2x( 4.x^2 - 12x +9 - 6x +9 +9) - 2x( 4.x^2 -8x+4 -8x -2)=0
<=>2x(4.x^2 -18x +27) - 2x(4.x^2 -16x +2)=0
<=>2x(4.x^2 -18x+27 -4.x^2 +16x-2)=0
<=>2x(25-2x)=0
<=>x=0 hoặc 25-2x=0 <=> x=0 hoặc x=25/2