K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2019

Ta có : \(\left(2x+2016\right)^3=\left(x+2000\right)^3+\left(x+16\right)^3\)

=> \(\left(2x+2016\right)^3-\left(x+2000\right)^3-\left(x+16\right)^3=0\)(*)

Gọi \(a=x+2000 ; b=x+16\)

=> ;\(a+b=2x+2016\)

Từ (*) suy ra : \(\left(a+b\right)^3-a^3-b^3=0\)

=> \(3ab\left(a+b\right)=0\)

+) \(a=0\) => \(x+2000=0\) => \(x=-2000\)

+) \(b=0\) => \(x+16=0\) => \(x=-16\)

+) \(a+b=0\)=> \(2x+2016=0\) => \(x=-1008\)

  Vậy \(x\in\left\{-2000;-1008;-16\right\}\)

12 tháng 3 2016

      2x2 + 2y2 -2xy+2x+2y+2=0

<=>x2-2xy+y2+x2+2x+1+y2+2y+1=0

<=>(x-y)2+(x+1)2+(y+1)2=0

<=>x=-1;y=-1

12 tháng 3 2016

còn x2016+a chia hết cho x-1 khi a =-1.đúng chuẩn

18 tháng 12 2017
a.2x(x-2016)-x+2016 =0 <=>(x-2016)(2x-1)=0 =>x-2016=0 hoặc 2x-1=0 =>x=2016 hoặc x=1/2
18 tháng 3 2016

x^2-2x+2016=(x-1)^2+2015>=2015

=> min của x^2-2x+2016=2015 khi x =1

-x^2+2x+2016=-(x-1)^2+2017=<2017

=> max -x^2+2x+2016 =2017 khi x=1

27 tháng 7 2017

x^2 -2x = 24

=> x^2 - 2x - 24=0

=>x^2 -8x+6x - 24 = 0

=> ( x^2- 8x)+( 6x-24) = 0

=> x(x-8) + 6(x-8) = 0

=> (x+6)(x-8)=0

=>\(\orbr{\begin{cases}x=-6\\x=8\end{cases}}\)

27 tháng 7 2017

\(=\frac{\left(2.5\right)^4.3^4-2^4\left(3.5\right)^2}{2^8.5^2.3^3}=\frac{2^4.3^2.5^2\left(5^2.3^2-1\right)}{2^8.5^2.3^3}=\frac{255-1}{16.3}=\frac{14}{3}\)

28 tháng 11 2021

\(595655225+455+963+852+741+9563+855282552\)=

16 tháng 12 2014

Áp dụng hằng đẳng thức A3 + B3 = (A + B)3 - 3AB(A + B) ta được :

(2x + 2014)3 = (x +2000)3 + (x + 14)3 \(\Leftrightarrow\)(2x + 2014)3 = (2x + 2014)3 - 3(x + 2000)(x + 14)(2x + 2014)

\(\Leftrightarrow\)3(x + 2000)(x + 14)(2x +2014) =0

Từ đó tìm được x

18 tháng 7 2019

a) (x - 1)3 - x(x - 2)- (x - 2) = 0

<=> x3 - 2x2 + x - x2 + 2x - 1 - x3 + 4x2 - 4x - x + 2 = 0

<=> x2 - 2x + 1 = 0

<=> x2 - 2.x.1 + 12 = 0

<=> (x - 1)2 = 0

        x - 1 = 0

        x = 0 + 1

        x = 1

=> x = 1

18 tháng 7 2019

a)Ta có : \(\left(x-1\right)^3-x\left(x-2\right)^2-\left(x-2\right)=0\)

\(=>\left(x-1\right)^3-\left(x^2-2x\right)\left(x-2\right)-\left(x-2\right)=0\)

\(=>\left(x-1\right)^3-\left(x-2\right)\left(x^2-2x+1\right)=0\)

\(=>\left(x-1\right)^3-\left(x-2\right)\left(x-1\right)^2=0\)

\(=>\left(x-1\right)^2\left(x-1-x+2\right)=0\)

\(=>\left(x-1\right)^2=0=>x-1=0=>x=1\)

Vậy x=1

b)(2x+5)(2x-7)-(4x+3)2=16

\(=>4x^2-4x-35-16x^2-24x-9-16=0\)

\(=>-\left(12x^2+28x+60\right)=0\)

\(=>12\left(x^2+\frac{7}{3}x+\frac{5}{3}\right)=0\)

\(=>x^2+\frac{7}{3}x+\frac{49}{36}+\frac{11}{36}=0=>\left(x+\frac{7}{6}\right)^2+\frac{11}{36}=0\)

Lại có \(\left(x+\frac{7}{6}\right)^2\ge0=>\left(x+\frac{7}{6}\right)^2+\frac{11}{36}\ge\frac{11}{36}>0\)

Vậy ko có giá trị nào của x thỏa mãn đề bài

\(=>x^2+\frac{7}{3}x+\frac{49}{36}+\frac{11}{36}=0=>\left(x+\frac{7}{6}\right)^2+\frac{11}{36}=0\)