Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2
a) 5x² + 30y
= 5(x² + 6y)
b) x³ - 2x² - 4xy² + x
= x(x² - 2x - 4y² + 1)
= x[(x² - 2x + 1) - 4y²]
= x[(x - 1)² - (2y)²]
= x(x - 1 - 2y)(x - 1 + 2y)
Bài 3:
a: \(2x\left(x-3\right)-x+3=0\)
=>\(2x\left(x-3\right)-\left(x-3\right)=0\)
=>(x-3)(2x-1)=0
=>\(\left[{}\begin{matrix}x-3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{2}\end{matrix}\right.\)
b: \(\left(3x-1\right)\left(2x+1\right)-\left(x+1\right)^2=5x^2\)
=>\(6x^2+3x-2x-1-x^2-2x-1=5x^2\)
=>\(5x^2-x-2=5x^2\)
=>-x-2=0
=>-x=2
=>x=-2
a, \(\left(x-2\right)^2-\left(x+3\right)^2-4\left(x+1\right)=5\)
\(\Leftrightarrow x^2-4x+4-\left(x^2+6x+9\right)-4x-4=5\)
\(\Leftrightarrow x^2-4x+4-x^2-6x-9-4x-4=5\)
\(\Leftrightarrow-14x-9=5\)
\(\Leftrightarrow-14x=14\)
\(\Leftrightarrow x=-1\)
Vậy....
b, \(\left(2x-3\right)\left(2x+3\right)-\left(x-1\right)^2-3x\left(x-5\right)=-44\)
\(\Leftrightarrow\left(2x\right)^2-3^2-\left(x^2-2x+1\right)-3x^2+15x=-44\)
\(\Leftrightarrow4x^2-9-x^2+2x-1-3x^2+15x=-44\)
\(\Leftrightarrow-10+17x=-44\)
\(\Leftrightarrow17x=-34\)
\(\Leftrightarrow x=-2\)
Vậy....
c, \(\left(5x+1\right)^2-\left(5x+3\right)\left(5x-3\right)=30\)
\(\Leftrightarrow\left(5x\right)^2+10x+1-\left[\left(5x\right)^2-3^2\right]=30\)
\(\Leftrightarrow\left(5x\right)^2+10x+1-\left(5x\right)^2+9=30\)
\(\Leftrightarrow10x+10=30\)
\(\Leftrightarrow10x=20\)
\(\Leftrightarrow x=2\)
Vậy....
d, \(\left(x+3\right)^2+\left(x-2\right)\left(x+2\right)-2\left(x-2\right)^2=7\)
\(\Leftrightarrow x^2+6x+9+x^2-4-2\left(x^2-4x+4\right)=7\)
\(\Leftrightarrow2x^2+6x+5-2x^2+8x-8=7\)
\(\Leftrightarrow14x-3=7\)
\(\Leftrightarrow14x=10\)
\(\Leftrightarrow x=\frac{10}{14}=\frac{5}{7}\)
Vậy...
Bài 3
a) 2x(x - 3) - x + 3 = 0
2x(x - 3) - (x - 3) = 0
(x - 3)(2x - 1) = 0
x - 3 = 0 hoặc 2x - 1 = 0
*) x - 3 = 0
x = 3
*) 2x - 1 = 0
2x = 1
x = 1/2
Vậy x = 1/2; x = 3
b) (3x - 1)(2x + 1) - (x + 1)² = 5x²
6x² + 3x - 2x - 1 - x² - 2x - 1 - 5x² = 0
(6x² - x² - 5x²) + (3x - 2x - 2x) = 0 + 1 + 1
-x = 2
x = -2
Bài 2
a) 5x² + 30y
= 5(x² + 6y)
b) x³ - 2x² - 4xy² + x
= x(x² - 2x - 4y² + 1)
= x[(x² - 2x + 1) - 4y²]
= x[(x - 1)² - (2y)²]
= x(x - 1 - 2y)(x - 1 + 2y)
a, ( 2x - 3 )2- (2x + 1)2 = -3
4x2-12x+9-4x2+4x-1=-3
-8x-1=-3
-8x=-2
x=\(\frac{1}{4}\)
b, (5x - 1) 2 - (5x + 4)(5x - 4) = 7
25x2-10x+1-25x2+16=7
-10x+17=7
-10x=-10
x=1
c, ( x- 5)2 + (x-3)(x+3) - 2(x + 1)2=0
x2-10x+25+x2-9-2x2-4x-2=0
-14x+14=0
-14(x-1)=0
=>x-1=0
x=1
a) \(\left(2x-3\right)^2-\left(2x+1\right)^2=-3\)
\(\Leftrightarrow4x^2-12x+9-4x^2-4x-1=-3\)
\(\Leftrightarrow-16x+8=-3\)
\(\Leftrightarrow-16x=-11\)
\(\Leftrightarrow x=\frac{11}{16}\)
b)\(\left(5x-1\right)^2-\left(5x+4\right)\left(5x-4\right)=7\)
\(\Leftrightarrow25x^2-10x+1-25x^2+16=7\)
\(\Leftrightarrow-10x+17=7\)
\(\Leftrightarrow-10x=-10\)
\(\Leftrightarrow x=1\)
c)\(\left(x-5\right)^2+\left(x-3\right)\left(x+3\right)-2\left(x+1\right)^2=0\)
\(\Leftrightarrow x^2-10x+25+x^2-9-2\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow2x^2-10x-16-2x^2-4x-2=0\)
\(\Leftrightarrow-14x-18=0\)
\(\Leftrightarrow-14x=18\)
\(\Leftrightarrow x=-\frac{9}{7}\)
#H
a)
<=> 10x - 35 + 16x - 10 = 5
<=> 10x + 16x = 5 + 35 + 10
<=> 26x = 50
<=> x = 50/26 = 25/13
\(2x^2+3\left(x-1\right)\left(x+1\right)=5x\left(x+1\right)\)
\(2x^2+3.\left(x^2-1\right)=5x^2+5x\)
\(2x^2+3x^2-3=5x^2+5x\)
\(5x^2-3=5x^2+5x\)
\(5x=-3\)
\(\Rightarrow x=-\frac{3}{5}\)
Ta có :
\(2x^2+3\left(x-1\right)\left(x+1\right)=5x\left(x+1\right)\)
=> \(2x^2+3\left(x^2-1\right)=5x^2+5x\)
=> \(2x^2+3x^2-3=5x^2+5x\)
=> \(5x^2-3=5x^2+5x\)
=> \(-3=5x\)
=> \(x=-\frac{3}{5}\)
c: Ta có: \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)
\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\)
\(\Leftrightarrow3x^2+26x=0\)
\(\Leftrightarrow x\left(3x+26\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{26}{3}\end{matrix}\right.\)
\(a,\Leftrightarrow x^2+8x+16-x^3-12x^2=16\\ \Leftrightarrow x^3+11x^2-8x=0\\ \Leftrightarrow x\left(x^2+11x-8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+11x-8=0\left(1\right)\end{matrix}\right.\\ \Delta\left(1\right)=121+32=153\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-11-3\sqrt{17}}{2}\\x=\dfrac{-11+3\sqrt{17}}{2}\end{matrix}\right.\\ S=\left\{0;\dfrac{-11-3\sqrt{17}}{2};\dfrac{-11+3\sqrt{17}}{2}\right\}\)
\(c,\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\\ \Leftrightarrow3x^2+26x=0\\ \Leftrightarrow x\left(3x+26\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{26}{3}\end{matrix}\right.\\ d,\Leftrightarrow x^3-6x^2+12x-8-x^3-125-6x^2=11\\ \Leftrightarrow-12x^2+12x-144=0\\ \Leftrightarrow x^2-x+12=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=3\end{matrix}\right.\)
Link : Tìm x biết 2x^2+3(x-1)(x+1)=5x(x+1)
\(2x^2-3\left(1-x\right)\left(x+1\right)=5x\left(x+1\right)\\ \Leftrightarrow2x^2+3\left(x^2-1\right)=5x^2+5x\\ \Leftrightarrow2x^2+3x^2-3=5x^2+5x\\ \Leftrightarrow x=-\dfrac{3}{5}\\ \Rightarrow S=\left\{-\dfrac{3}{5}\right\}\)