Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x+3\right)^4=2401\)
\(\Rightarrow\left(2x+3\right)^4=7^4\)
=> 2x - 3 = 7 hoặc 2x - 3 = -7
x = 5 x = -2
\(\left(x-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0^2\)
\(\Leftrightarrow x-\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy x = 1/2
\(\left(x-2\right)^2=1\)
\(\Leftrightarrow\left(x-2\right)^2=1^2\)
\(\Leftrightarrow x-2=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}\)
Vậy x = 3 hoặc x = 1
\(\left(2x-1\right)^3=-8\)
\(\Leftrightarrow\left(2x-1\right)^3=\left(-2\right)^3\)
\(\Leftrightarrow2x-1=-2\)
<=> 2x = -1
<=> x = -0,5
Vậy x = -0,5
\(\left(x-\frac{1}{2}\right)^2=0\)
\(x-\frac{1}{2}=0\)
\(x=\frac{1}{2}\)
\(\left(x-2\right)^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1+2\\x=-1+2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
Vậy\(x\in\left\{3;1\right\}\)
\(\left(2x-1\right)^3=-8\)
\(\left(2x-1\right)^3=\left(-2\right)^3\)
\(2x-1=-2\)
\(2x=\left(-2\right)+1\)
\(2x=-1\)
\(x=-1\times2\)
\(x=-2\)
\(x\left(\frac{1}{2}\right)^2=\frac{1}{16}\)
\(x\left(\frac{1}{2}\right)^2=\left(\frac{1}{4}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x\frac{1}{2}=\frac{1}{4}\\x\frac{1}{2}=-\frac{1}{4}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{4}:\frac{1}{2}\\x=-\frac{1}{4}:\frac{1}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}}\)
7^2+7^2x+2=2401
=>7^2+7^2x.7^2=2401
=>7^2.(1+7^2x)=2401
=>1+7^2x+1=49=7^2
=>....
a) \(64^x:16^x=256\)
\(\Rightarrow\left(2^6\right)^x:\left(2^4\right)^x=2^8\)
\(\Rightarrow2^{6x}:2^{4x}=2^8\)
\(\Rightarrow2^{6x-4x}=2^8\)
\(\Rightarrow2^{2x}=2^8\)
\(\Rightarrow2x=8\)
\(\Rightarrow x=4\)
b) \(\dfrac{-2401}{7^x}=-7\)
\(\Rightarrow\dfrac{-7^4}{7^x}=-7\)
\(\Rightarrow-7^{4-x}=-7\)
\(\Rightarrow7^{4-x}=7\)
\(\Rightarrow4-x=1\)
\(\Rightarrow x=4-1\)
\(\Rightarrow x=3\)
c) \(\dfrac{64}{\left(-4\right)^x}=-256\)
\(\Rightarrow\left(-4\right)^x=\dfrac{64}{-256}\)
\(\Rightarrow\left(-4\right)^x=-4\)
\(\Rightarrow\left(-4\right)^x=\left(-4\right)^1\)
\(\Rightarrow x=1\)
\(a) 64^x:16^x=256\\\Rightarrow (64:16)^x=256\\\Rightarrow 4^x=4^4\\\Rightarrow x=4\\---\)
\(b,\dfrac{-2401}{7^x}=-7\)
\(\Rightarrow7^x=-2401:\left(-7\right)\)
\(\Rightarrow7^x=343\)
\(\Rightarrow7^x=7^3\)
\(\Rightarrow x=3\)
\(c,\dfrac{64}{\left(-4\right)^x}=-256\)
\(\Rightarrow\left(-4\right)^x=64:\left(-256\right)\)
\(\Rightarrow\left(-4\right)^x=-\dfrac{1}{4}\)
\(\Rightarrow\left(-4\right)^x=\left(-4\right)^{-1}\)
\(\Rightarrow x=-1\)
#\(Toru\)
Tham khảo:
TH1: Nếu x>2 ta có: x-2 + 2x-3 =2x + 1
<=> x=6 .
TH2: Nếu \(\dfrac{3}{2}\) ≤x≤2 ta có: 2 - x + 2x -3 = 2x+1
<=> x=-2 (loại)
TH3: x<\(\dfrac{3}{2}\) ta có : 2-x+3-2x= 2x+1
<=> x=\(\dfrac{4}{5}\)
Vậy : x=6 ; x=\(\dfrac{4}{5}\)
Giải
TH1: Nếu x>2 ta có: x-2 + 2x-3 =2x + 1
<=> x=6 .
TH2: Nếu 3/2 ≤x≤2 ta có: 2 - x + 2x -3 = 2x+1
<=> x=-2 (loại)
TH3: x<3/2 ta có : 2-x+3-2x= 2x+1
<=> x=4/5
Vậy : x=6 ; x=4/5