Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\left(2x+6\right)^2\ge0\)
\(5\left(y-3\right)^{20}\ge0\)
\(\Rightarrow\left(2x+6\right)^2+5\left(y-3\right)^{20}\ge0\)
Mà \(\left(2x+6\right)^2+5\left(y-3\right)^{20}\le0\)
\(\Rightarrow\left(2x+6\right)^2+5\left(y-3\right)^{20}=0\\ \Rightarrow\left\{{}\begin{matrix}\left(2x+6\right)^2=0\\5\left(y-3\right)^2=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}2x+6=0\\y-3=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=-3\\y=3\end{matrix}\right.\)
Bài 1L
a) \(\left(x-7\right)\left(x+3\right)< 0\)
TH1:
\(\hept{\begin{cases}x-7>0\\x+3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>7\\x< -3\end{cases}}}\)( loại )
TH2:
\(\hept{\begin{cases}x-7< 0\\x+3>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 7\\x>-3\end{cases}\Leftrightarrow}-3< x< 7}\)( chọn )
Vậy \(-3< x< 7\)
Bài 2:
a) \(\left(5x+8\right)-\left(2x-15\right)+21=2x-5\)
\(\Leftrightarrow5x+8-2x+15+21=2x-5\)
\(\Leftrightarrow5x-2x-2x=-5-21-8-15\)
\(\Leftrightarrow x=-49\)
Vậy ...
(2x - 7) + 17 = 6
=> 2x - 7 = 6 - 17
=> 2x - 7 = -11
=> 2x = -11 + 7
=> 2x = -4
=> x = -4 : 2
=> x = -2
+) 12 -2(3 - 3x)= -2
=> 2(3 - 3x) = 12 + 2
=> 2(3 - 3x) = 14
=> 3 - 3x = 14 : 2
=> 3 - 3x = 7
=> 3x = 3 - 7
=> 3x = -4
=> x = -4/3
\(\left(x+1\right)\left(x-3\right)=0\)
=> \(\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
Vậy...
\((x-6)(3x-9)>0\)
TH1:
\(\orbr{\begin{cases}x-6< 0\\3x-9< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< 6\\x< 3\end{cases}}\)\(\Rightarrow x< 3\)
TH2:
\(\orbr{\begin{cases}x-6>0\\3x-9>0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>6\\x>3\end{cases}}\)\(\Rightarrow x>6\)
Vậy \(x< 3\) hoặc \(x>6\)thì \((x-6)(3x-9)>0\)
Học tốt!
20.
\((2x-1)(6-x)>0\)
TH1:
\(\orbr{\begin{cases}2x-1>0\\6-x>0\end{cases}\Rightarrow\orbr{\begin{cases}x< \frac{1}{2}\\x< 6\end{cases}}\Rightarrow x< 6}\)
TH2
\(\orbr{\begin{cases}2x-1< 0\\6-x< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x>6\end{cases}}\Rightarrow x>\frac{1}{2}}\)
Vậy \(x< 6\)hoặc \(x>\frac{1}{2}\)thì \((2x-1)(6-x)>0\)
\(a,x=3x^2\Rightarrow x-3x^2=0\Rightarrow x\left(1-3x\right)=0\Rightarrow\orbr{\begin{cases}x=0\\1-3x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{3}\end{cases}}\)
\(b,\left(2x-6\right)\left(x+4\right)+2\left(2x-6\right)=0\)
\(\Rightarrow\left(2x-6\right)\left(x+4+2\right)=0\)
\(\Rightarrow\left(2x-6\right)\left(x+6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-6=0\\x+6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-6\end{cases}}\)
\(c,\left(2x-5\right)\left(x+9\right)+6x-15=0\)
\(\Rightarrow\left(2x-5\right)\left(x+9\right)+3\left(2x-5\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(x+9+3\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(x+12\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-5=0\\x+12=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-12\end{cases}}\)
( 2x - 3 ) ( 6 - 2x ) = 0
+ TH1 : 2x -3 = 0 + TH2 : 6 - 2x = 0
2x - 3 = 0 6 - 2x = 0
2x = 0+ 3 2x = 6 - 0
2x = 3 2x = 6
x = 3 : 2 x = 6 : 2
x = \(\dfrac{3}{2}\) x = 3
vậy x = \(\dfrac{3}{2}\) hoặc x = 3