K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2017

1) \(x^2-6y^2=1\)

=> \(x^2-1=6y^2\)

=> \(y^2=\frac{x^2-1}{6}\)

Nhận thấy y^2 thuộc Ư của \(\dfrac{x^2-1}{6}\)

=> \(y^2\) là số chẵn.

Mà y là số nguyên tố.

=> y = 2.

Thay vào:

=> \(x^2-1=\dfrac{4}{6}=24\)

=> \(x^2=25\)

=> \(x=5\)

Vậy: x = 5; y = 2.

17 tháng 4 2020

B = 1.2.3.....2012(1+1/2+1/3+...+1/2012)

 Ta thấy từ 1 đến 2012 sẽ có hai số là 3 và 1342, mà 3x1342=4026 chia hết cho 2013 

=> B = 1.2.(3.1342).5...1341.1343.....2012.(1+1/2+1/3...+1/2012)

     B = 1.2.4026.5...1341.1343.....2012.(1+1/2+1/3...+1/2012)

=> B chia hết cho 2013 

 Bài toán này cho thêm tổng một dãy phân số trong ngoặc chỉ để mình hoang mang thôi bạn nhé =))

Chúc bạn học tốt, nhớ tích câu trả lời của mình nhé !

7 tháng 4 2017

c) Cho B = (1.2.3....2012) . ( 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{2012}\) ) Chứng minh B chia hết cho 2013

B = (1.2.3....2012) . (1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + ...+ \(\dfrac{1}{2012}\) )

=(1.2.3...671...2012) . (1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{2012}\))

=(1.2.(3.671)...2012) . (1 + \(\dfrac{1}{2}\) +\(\dfrac{1}{3}\) + ... + \(\dfrac{1}{2012}\))

=(1.2.2013...2012) . (1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{2012}\))

Vậy B chia hết cho 2013

Đúng đấy, bạn cứ chép vào đi

9 tháng 4 2017

sai rồi

S = 1 + 2 1 + 3 1 + 4 1 + ... + 2012 1 + 2013 1 − 2 2 1 + 4 1 + 6 1 + ... + 2012 1 S = 1 + 2 1 + 3 1 + ... + 2012 1 + 2013 1 − 1 − 2 1 − 3 1 − ... − 1006 1 S = 1007 1 + 1008 1 + ... + 2012 1 + 2013 1 = P =>(S-P)2013=02013=0