Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x-3+3|x-1|=4x+1.\)
\(\Leftrightarrow3|x-1|=2x+4\)
*Với x < 1 ta có phương trình:
\(3\left(-x+1\right)=2x+4\)
\(\Leftrightarrow-3x+3=2x+4\)
\(\Leftrightarrow5x+1=0\)
\(\Leftrightarrow x=-\frac{1}{5}\)(TM)
*Với \(x\ge1\)ta có phương trình:
\(2x-3+3\left(x-1\right)=4x+1\)
\(\Leftrightarrow2x-3+3x-3=4x+1\)
\(\Leftrightarrow x-7=0\)
\(\Leftrightarrow x=7\)(TM)
Vậy ............
TH1: \(x\ge5\)
<=> \(\left\{{}\begin{matrix}\left|x-5\right|=x-5\\\left|2x-1\right|=2x-1\end{matrix}\right.\)
PT <=> \(x-5+2x-1=2x+3\)
<=> x = 9 (Tm)
TH2: \(\dfrac{1}{2}\le x< 5\)
<=> \(\left\{{}\begin{matrix}\left|x-5\right|=5-x\\\left|2x-1\right|=2x-1\end{matrix}\right.\)
PT <=> 5 - x + 2x -1 = 2x + 3
<=> x = 1(Tm)
TH3: \(x< \dfrac{1}{2}\)
<=> \(\left\{{}\begin{matrix}\left|x-5\right|=5-x\\\left|2x-1\right|=1-2x\end{matrix}\right.\)
PT <=> \(5-x+1-2x=2x+3\)
<=> \(5x=3< =>x=\dfrac{3}{5}\left(l\right)\)
KL: x \(\in\left\{1;9\right\}\)
c) l x - 5 l = 2x
\(\Leftrightarrow\orbr{\begin{cases}x-5=2x\\x-5=-2x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-2x=5\\x+2x=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=5\\3x=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{5}{3}\end{cases}}\)
Hok tốt!!!!!!!
Tìm x, biết:
a) |2x + 1| = 17
<=>\(\orbr{\begin{cases}2x+1=17\\2x+1=-17\end{cases}}\)
<=>\(\orbr{\begin{cases}2x=16\\2x=-18\end{cases}}\)
<=> \(\hept{\begin{cases}x=8\\x=-9\end{cases}}\)
a) 2x - 5 = 3 + 2x - 7x
=> 2x - 2x + 7x = 3 +5
=> 7x = 8
=> x = 8/7
b) \(\left(2x-1\right)^2=\left(2x-1\right)^5\)
=> \(\left(2x-1\right)^2-\left(2x-1\right)^5=0\)
=> \(\left(2x-1\right)^2\left[1-\left(2x-1\right)^3\right]=0\)
=> \(\orbr{\begin{cases}\left(2x-1\right)^2=0\\1-\left(2x-1\right)^3=0\end{cases}}\)
=> \(\orbr{\begin{cases}2x-1=0\\\left(2x-1\right)^3=1\end{cases}}\)
=> \(\orbr{\begin{cases}2x=1\\2x-1=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{2}\\2x=2\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{2}\\x=1\end{cases}}\)
Ta có : \(\left(2x-1\right)^5=\left(2x-1\right)^3\)
<=> \(\left(2x-1\right)^5-\left(2x-1\right)^3=0\)
<=> \(\left(2x-1\right)^3\left(\left(2x-1\right)^2-1\right)=0\)
<=> \(\orbr{\begin{cases}\left(2x-1\right)^3=0\\\left(2x-1\right)^2-1=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\\left(2x-1\right)^2=1\end{cases}}\) ( chỗ này máy lỗi , ko đánh tiếp được phương trình)
* TH1 : \(2x-1=0\Rightarrow x=\frac{1}{2}\)
* TH2 : \(\left(2x-1\right)^2=1\Leftrightarrow\orbr{\begin{cases}2x-1=1\\2x-1=-1\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}\)
Vậy : \(x=\frac{1}{2};x=1\)hoặc \(x=0\)
a) \(2x+\frac{3}{15}=\frac{7}{5}\)
=> \(2x=\frac{7}{5}-\frac{3}{15}=\frac{21}{15}-\frac{3}{15}=\frac{18}{15}\)
=> \(x=\frac{18}{15}:2=\frac{18}{15}\cdot\frac{1}{2}=\frac{9}{15}\cdot\frac{1}{1}=\frac{9}{15}\)
b) \(x-\frac{2}{9}=\frac{8}{3}\)
=> \(x=\frac{8}{3}+\frac{2}{9}\)
=> \(x=\frac{24}{9}+\frac{2}{9}=\frac{26}{9}\)
c) \(\frac{-8}{x}=\frac{-x}{18}\)
=> x(-x) = (-8).18
=> -x2 = -144
=> x2 = 144(bỏ dấu âm)
=> x = \(\pm\)12
d) \(\frac{2x+3}{6}=\frac{x-2}{5}\)
=> 5(2x + 3) = 6(x - 2)
=> 10x + 15 = 6x - 12
=> 10x + 15 - 6x + 12 = 0
=> 4x + 27 = 0
=> 4x = -27
=> x = -27/4
e) \(\frac{x+1}{22}=\frac{6}{x}\)
=> x(x + 1) = 132
=> x(x + 1) = 11.12
=> x = 11
f) \(\frac{2x-1}{2}=\frac{5}{x}\)
=> x(2x - 1) = 10
=> 2x2 - x = 10
=> 2x2 - x - 10 = 0
tới đây tự làm đi nhé
g) \(\frac{2x-1}{21}=\frac{3}{2x+1}\)
=> (2x - 1)(2x + 1) = 63
=> 4x2 - 1 = 63
=> 4x2 = 64
=> x2 = 16
=> x = \(\pm\)4
h) Tương tự
a) \(\frac{2x+3}{15}=\frac{7}{5}\Leftrightarrow10x+15=105\Leftrightarrow10x=90\Rightarrow x=9\)
b) \(\frac{x-2}{9}=\frac{8}{3}\Leftrightarrow3x-6=72\Leftrightarrow3x=78\Rightarrow x=26\)
c) \(\frac{-8}{x}=\frac{-x}{18}\Leftrightarrow x^2=144\Leftrightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)
d) \(\frac{2x+3}{6}=\frac{x-2}{5}\Leftrightarrow10x+15=12x-12\Leftrightarrow2x=27\Rightarrow x=\frac{27}{2}\)
e) \(\frac{x+1}{22}=\frac{6}{x}\Leftrightarrow x^2+x-132=0\Leftrightarrow\left(x-11\right)\left(x+12\right)=0\Leftrightarrow\orbr{\begin{cases}x=11\\x=-12\end{cases}}\)
f) \(\frac{2x-1}{2}=\frac{5}{x}\Leftrightarrow2x^2-x-10=0\Leftrightarrow\left(x-2\right)\left(2x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{5}{2}\end{cases}}\)
g) \(\frac{2x-1}{21}=\frac{3}{2x+1}\Leftrightarrow4x^2=64\Leftrightarrow x^2=16\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
h) \(\frac{10x+5}{6}=\frac{5}{x+1}\Leftrightarrow10x^2+15x-25=0\Leftrightarrow5\left(x-1\right)\left(2x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)
Ta có:
|2x-1|5 = |1-2x|3
=> |2x-1|=|1-2x| = 1 vì 5 và 3 là hai số nguyên tố cùng nhau.
Xét |2x-1| và |1-2x|
=> \(\orbr{\begin{cases}1-2x< 0\\2x-1< 0\end{cases}}\) hoặc \(\orbr{\begin{cases}1-2x>0\\2x-1>0\end{cases}}\)
Th1: 1-2x <0
=> 1-2x = -1
=> x =1-(-1) : 2 = 1 (chọn)
Th2: 2x-1 <0
=> 2x - 1 = -1
=> x = (-1+1):2
=> x = 0 (chọn)
Th3: 1-2x >0
=> 1-2x = 1
=> x = (1-1):2
=> x = 0 (Chọn)
th4: 2x-1 >0
=> 2x-1 = 1
=> x = (1+1):2
=> x = 1 (chọn)
Vậy x = 0 hoặc x =1
\(|2x-1|^5=|1-2x|^3\)
\(\Rightarrow\orbr{\begin{cases}2x-1=1-2x\\|2x-1|=|1-2x|\end{cases}}\)
Trường hợp 1:
\(2x-1=1-2x\)
\(2x+2x=1+1\)
\(4x=2\)
\(\Rightarrow x=0,5\)
Trường hợp 2:
\(|2x-1|=|1-2x|\)
\(\Rightarrow x\le0\)
\(\Rightarrow-2x+1=1-2x\)
\(\Rightarrow-2x+1=-2x+1\)
\(\Rightarrow x\in N\)