![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) (2x-3)2=3-2x
=> (3-2x)2=3-2x
=>(3-2x)(3-2x)=3-2x
=>(3-2x)(3-2x)-(3-2x)=0
=>(3-2x)(3-2x+1)=0
=>3-2x=0 hoặc 3-2x+1=0(bạn tự tính ra nha)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x-2\right)^{2x+3}=\left(x-2\right)^{2x+1}\)
\(\Rightarrow2x+3=2x+1\)
\(\Rightarrow2x-2x=1-3\)
\(\Rightarrow0=-2\left(\text{vô lí}\right)\)
Vậy \(x=\varnothing\)
\(\left(x-2\right)^{2x+3}=\left(x-2\right)^{2x+1}\)
\(\Rightarrow\left(x-2\right)^{2x+3}-\left(x-2\right)^{2x+1}=0\)
\(\Rightarrow\left(x-2\right)^{2x+1}\left[\left(x-2\right)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-2\right)^{2x+1}=0\\\left(x-2\right)^2-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\\left(x-2\right)^2=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x-2=\pm1\Rightarrow x=3\text{ }or\text{ }x=1\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x-2\right)^{2x+1}=\left(2-x\right)^{2x+3}\)
\(\left(x-2\right)^{2x+1}=-\left(x-2\right)^{2x+3}\)
\(\Rightarrow2x+1=-\left(2x+3\right)\)
\(\Rightarrow2x+1=-2x-3\)
\(\Rightarrow2x+1+2x+3=0\)
\(\Rightarrow4x+4=0\)
\(\Rightarrow4x=-4\)
\(\Rightarrow x=-1\)
vậy \(x=-1\)
(x-2)2x+1=(2-x)2x+3
(x-2)2x.(x-2)=(2-x)2x(2-x)3
ta có (x-2)2x=(2-x)2x
=>x-2=(2-x)3
(2-x)3+2-x=0
(2-x)[(2-x)2+1]=0
ta có (2-x)2+1>0
=>2-x=0
x=2
vậy x =2
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)
Ta có: (1/2x - 5)20 \(\ge\)0 \(\forall\)x
(y2 - 1/4)10 \(\ge\)0 \(\forall\)y
=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)0 \(\forall\)x;y
Theo (1) => ko có giá trị x;y t/m
Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0
=> (x - 7)x + 1.[1 - (x - 7)10] = 0
=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)0 \(\forall\)x
=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x
=> A \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6
Vậy Min A = -1 tại x = -1/6
b) Ta có: -(4/9x - 2/5)6 \(\le\)0 \(\forall\)x
=> -(4/9x - 2/15)6 + 3 \(\le\)3 \(\forall\)x
=> B \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10
vậy Max B = 3 tại x = 3/10
\(\left(2x-1\right)^2=\left(2x-1\right)^3\)
Vì \(\left(2x-1\right)^2\ne\left(2x-1\right)^3\)khi \(\left(2x-1\right)^2;\left(2x-1\right)^3\ne0;1\)
\(TH1:\)
\(=>\left(2x-1\right)^2=0\) \(\left(2x-1\right)^3=0\)
\(2x-1=0\) \(2x-1=0\)
\(x=\frac{1}{2}\) \(x=\frac{1}{2}\)
\(TH2:\)
\(\left(2x-1\right)^2=1\) \(\left(2x-1\right)^3=1\)
\(2x-1=1\) \(2x-1=1\)
\(x=1\) \(x=1\)
Vậy \(x\in\left\{\frac{1}{2};1\right\}\)
(2x-1)2=(2x-1)3
=>(2x-1)2-(2x-1)3=0
=>(2x-1)[1-(2x-1)]=0
=>(2x-1)(2-2x)=0
=>2x-1=0 hoặc 2-2x=0
Nếu 2x-1=0
=>2x=1
=>x=\(\frac{1}{2}\)
Nếu 2-2x=0
=>2x=2
=>x=1
Vậy....