Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 2I3xI+Iy+3I=10 <=>6IxI+Iy+3I=10
vì 6IxI<=10 =>IxI<=10/6 <=>IxI<=1 => x=1;-1;0
x=1 hoặc x=-1=>Iy+3I=4 =>y=1 hoặc -7
x=0 => Iy+3I=10=>y=7 hoặc -13
b, Tương tự 12IxI<=21=>IxI<=21/12 =>IxI=1
x=1 hoặc -1 =>y=6 hoặc -12
x=0 => y= 18 hoặc -24
c, Tương tự I2x+1I<=3 <=> -3<= 2x+1<=3 <=>-4<= 2x<= 2 <=>-2<= x <=1
x=-2 hoặc 1=>Iy-4I=0 => y=4
x=-1 hoặc 0 =>Iy-4I=2 =>y=6 hoặc 2
d,2y^2+I2x+1I=5
tương tự 2y^2<=5 =>y^2<=5/2 <=>y^2<=2 =>y^2=1 hoặc 0
y^2=0 =>y=o thì I2x+1I=5 => x=2 hoặc -3
y^2=1 => y= 1 hoặc -1 thì I2x+1I=3 =>x =1 hoặc -2
a) \(\left|4-x\right|+2x=3\)
<=> \(\left|4-x\right|=3-2x\)
<=> \(\orbr{\begin{cases}4-x=3-2x\left(x\le4\right)\\x-4=3-2x\left(x>4\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-1\left(tm\right)\\3x=7\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-1\\x=\frac{7}{3}\left(ktm\right)\end{cases}}\)
Vậy x = -1
b) \(\left|x-7\right|+2x+5=6\)
<=> \(\left|x-7\right|=1-2x\)
<=> \(\orbr{\begin{cases}x-7=1-2x\left(đk:x\ge7\right)\\x-7=2x-1\left(đk:x< 7\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}3x=8\\x=-6\left(tm\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{8}{3}\left(ktm\right)\\x=-6\left(tm\right)\end{cases}}\)
Vậy x = -6
c) \(3x-\left|2x+1\right|=2\)
<=> \(\left|2x+1\right|=3x-2\)
<=> \(\orbr{\begin{cases}2x+1=3x-2\left(đk:x\ge-\frac{1}{2}\right)\\2x+1=2-3x\left(đk:x< -\frac{1}{2}\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=3\left(tm\right)\\5x=1\end{cases}}\)
<=> \(\orbr{\begin{cases}x=3\\x=\frac{1}{5}\left(ktm\right)\end{cases}}\)
Vậy x = 3
d) \(\left|x+2\right|-x=2\)
<=> \(\left|x+2\right|=x+2\)
<=> \(\orbr{\begin{cases}x+2=x+2\left(đk:x\ge-2\right)\\x+2=-x-2\left(x< -2\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}0x=0\\2x=-4\end{cases}}\)
<=> 0x = 0 (luôn đúng) và x = -2 (ktm)
Vậy x \(\ge\)-2
e) \(\left|x-3\right|=21\)
<=> \(\orbr{\begin{cases}x-3=21\\3-x=21\end{cases}}\)
<=> \(\orbr{\begin{cases}x=24\\x=-18\end{cases}}\)
Vậy x = 24 hoặc x = -18
f) \(\left|2x+3\right|-\left|x-3\right|=0\)
<=> \(\left|2x+3\right|=\left|x-3\right|\)
<=> \(\orbr{\begin{cases}2x+3=x-3\\2x+3=3-x\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\3x=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=0\end{cases}}\)
Vậy x thuộc {-6; 0}
g) Ta có: \(\left|x+\frac{1}{8}\right|\ge0\forall x\)
\(\left|x+\frac{2}{8}\right|\ge0\forall x\)
\(\left|x+\frac{5}{8}\right|\ge0\forall x\)
=> VT = \(\left|x+\frac{1}{8}\right|+\left|x+\frac{2}{8}\right|+\left|x+\frac{5}{8}\right|\ge0\forall x\)
=> VP \(\ge0\) => \(4x\ge0\) => \(x\ge0\)
Do đó: \(x+\frac{1}{8}+x+\frac{2}{8}+x+\frac{5}{8}=4x\)
<=> \(3x+1=4x\) <=> \(x=1\left(tm\right)\)
Vậy x = 1
h) \(\left|x-2\right|-\left|2x+3\right|-x=-2\)
<=> \(\left|x-2\right|-\left|2x+3\right|=x-2\)(*)
Lập bảng xét dấu:
x -3/2 2
x - 2 2 - x | 2 - x 0 x - 2
2x + 3 -2x - 3 0 2x + 3 | 2x + 3
Xét x < -3/2 => pt (*) trở thành: 2 - x + 2x + 3 = x - 2
<=> x + 5 = x - 2 <=> 0x = -7 (vô lí)
Xét -3/2 \(\le\) x < 2 => pt (*) trở thành: 2 - x - 2x - 3 = x - 2
<=> 4x = 1 <=> x = 1/4 ((tm)
Xét x \(\ge\) 2 => pt (*) trở thành x - 2 - 2x - 3 = x - 2
<=> 2x = -3 <=> x = -3/2 (ktm)
Vậy x = 1/4
i) |2x - 3| - x = |2 - x|
<=> |2x - 3| - |2 - x| = x (*)
Lập bảng xét dấu
x 3/2 2
2x - 3 3 - 2x 0 2x - 3 | 2x - 3
2 - x 2 - x | 2 - x 0 x - 2
Xét x < 3/2 => pt (*) trở thành: 3 - 2x - 2 + x = x
<=> 2x = 1 <=> x = 1//2 ((tm)
Xét \(\frac{3}{2}\le x< 2\)=> pt (*) trở thành: 2x - 3 - 2 + x = x
<=> 2x = 5 <=> x = 5/2 (ktm)
Xét x \(\ge\)2 ==> pt (*) trở thành: 2x - 3 - x + 2 = x
<=> 0x = -5 (vô lí)
Vậy x = 1/2
k) 2|x - 3| - |4x - 1| = 0
<=> 2|x - 3| = |4x - 1|
<=> \(\orbr{\begin{cases}2\left(x-3\right)=4x-1\\2\left(x-3\right)=1-4x\end{cases}}\)
<=> \(\orbr{\begin{cases}2x-6=4x-1\\2x-6=1-4x\end{cases}}\)
<=> \(\orbr{\begin{cases}2x=-5\\6x=7\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=\frac{7}{6}\end{cases}}\) Vậy ...
- a, \(\frac{2}{3}x+\frac{5}{7}=\frac{3}{10}\Rightarrow\frac{2}{3}x=\frac{3}{10}-\frac{5}{7}=\frac{-29}{70}\Rightarrow x=\frac{-29}{70}:\frac{2}{3}=\frac{-87}{140}\)
- b, \(\frac{3}{4}x-\frac{1}{8}=\frac{3}{7}\Rightarrow\frac{3}{4}x=\frac{3}{7}+\frac{1}{8}=\frac{31}{56}\Rightarrow x=\frac{31}{56}:\frac{3}{4}=\frac{31}{42}\)
c, \(\frac{-21}{13}x+\frac{1}{3}=\frac{2}{3}\Rightarrow\frac{-21}{13}x=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\Rightarrow x=\frac{1}{3}:\frac{-21}{3}=\frac{-1}{21}\)
Vì |x+1| lớn hơn hoặc bằng 0
|x+2| lớn hơn hoặc bằng 0
|x+3| lớn hơn hoặc bằng 0
Nên |x+1|+|x+2|+|x+3| lớn hơn hoặc bằng 0
Hay 4x lớn hơn hoặc bằng 0
=> x lớn hơn hoặc bằng 0
Ta có: x lớn hơn hoặc bằng 0
Nên |x+1|=x+1
|x+2|=x+2
|x+3|=x+3
=> |x+1"+|x+2|+"x+3|=x+1+x+2+x+3
hay x+1+x+2+x+3=4x
3x+6=4x
x=6
\(\Rightarrow\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{5.6}+\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{x.\left(x+1\right)}=2.\left(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x.\left(x+1\right)}\right)\)
\(=2.\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}\right)=2.\left(\frac{1}{5}-\frac{1}{x+1}\right)=\frac{2}{5}-\frac{2}{x+1}=\frac{3}{10}\)
=> \(\frac{2}{x+1}\)= \(\frac{1}{10}=\frac{2}{20}\)
=> x +1 = 20 => x = 19
bạn trên sai rồi, nếu đã nhân đôi lên tất cả thì cx phải nhân luôn con cuối chứ
4) xy-5x+y=10
=> x(y-5)+(y-5)=15
=> (y-5)(x-1)=15
từ đây lập bảng ra nhé , chắc bạn biết