K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2016

 

a) (2x+3)(4x2-6x+9)-2(4x3-1)+(8x-1)=15

<=>8x3+27-8x3+2+8x-1=15

<=>8x+28=15

<=>8x=-13

<=>x=-13/8

 b) (x+3)3-(x+9)(x2+27)-(5x-216) = 3x-4

<=>x3+9x2+27x+27-x3-27x-9x2-243-5x+216=3x-4

<=>-5x=3x-4

<=>8x=4

<=>x=1/2

18 tháng 7 2016

có cần kết luận k?

 

22 tháng 8 2017

b, ( x+ x ) ( x+ x + 1 )=6

=> ( x+ x ) ( x+ x + 1) - 6 = 0

=> ( x - 1 ) ( x + 2 ) ( x2 + x +3 ) = 0

=> x - 1= 0 => x= 1

=> x + 2 = 0 => x = -2

=>  x + x + 3 = 0 => 12 - 4 ( 1.3 ) = -11 ( vô lí )

Vậy x = 1; x= -2

21 tháng 11 2017

a) \(2x^3-x^2+3x+6=0\)

\(\left(2x^3-x^2\right)+\left(3x+6\right)=0\)

\(x^2\left(2-x\right)-3\left(2-x\right)=0\)

\(\left(x^2-3\right)\left(2-x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2-3=0\\2-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\sqrt{3}\\x=2\end{cases}}\)\(\)

           vậy \(\orbr{\begin{cases}x=\sqrt{3}\\x=2\end{cases}}\)

6 tháng 10 2015

nhiều v~~~, dễ mà lp 8 ? 

30 tháng 10 2017

309 do

2 tháng 7 2016

a) \(\Leftrightarrow16x^2-\left(16x^2-40x+25\right)=15\)

\(\Leftrightarrow16^2-16x^2+40x+25-15=0\)

\(\Leftrightarrow40x+10=0\)

\(\Leftrightarrow x=-\frac{10}{40}=-\frac{1}{4}\)

b)\(\Leftrightarrow4x^2+12x+9-4\left(x^2-1\right)=49\)

\(\Leftrightarrow4x^2+12x+9-4x^2+4-49=0\)

\(\Leftrightarrow12x-36=0\)

\(\Leftrightarrow x=\frac{36}{12}=3\)

c) \(\Leftrightarrow9x^2-6x+1-\left(9x^2-12x+4\right)=0\)

\(\Leftrightarrow9x^2-6x+1-9x^2+12x-4=0\)

\(\Leftrightarrow6x-3=0\)

\(\Leftrightarrow x=\frac{3}{6}=\frac{1}{2}\)

nha Nhấp Đúng nha . Chúc bạn học tốt!!!!Cảm ơn !

1 tháng 1 2018

a)\(\dfrac{27-x^3}{5x+5}:\dfrac{2x-6}{3x+3}\)

\(=\dfrac{\left(3-x\right)\left(9+3x+x^2\right)}{5\left(x+1\right)}:\dfrac{2\left(x-3\right)}{3\left(x+1\right)}\)

\(=\dfrac{\left(3-x\right)\left(9+3x+x^2\right)3\left(x+1\right)}{5\left(x+1\right)2\left(x-3\right)}\)

\(=\dfrac{-\left(x-3\right)\left(9+3x+x^2\right)3\left(x+1\right)}{5\left(x+1\right)2\left(x-3\right)}\)

\(=\dfrac{-\left(9+3x+x^2\right)3}{10}\)

b)\(4x^2-16:\dfrac{3x+6}{7x-2}\)

\(=4\left(x^2-4\right):\dfrac{3\left(x+2\right)}{7x-2}\)

\(=4\left(x-2\right)\left(x+2\right)\cdot\dfrac{7x-2}{3\left(x+2\right)}\)

\(=\dfrac{4\left(x-2\right)\left(x+2\right)\left(7x-2\right)}{3\left(x+2\right)}\)

\(=\dfrac{4\left(x-2\right)\left(7x-2\right)}{3}\)

c)\(\dfrac{3x^3+3}{x-1}:x^2-x+1\)

\(=\dfrac{3\left(x^3+1\right)}{x-1}:x^2-x+1\)

\(=\dfrac{3\left(x+1\right)\left(x^2-x+1\right)}{x-1}\cdot\dfrac{1}{x^2-x+1}\)

\(=\dfrac{3\left(x+1\right)}{x-1}\)

d)\(\dfrac{4x+6y}{x-1}:\dfrac{4x^2+12xy+9y^2}{1-x^3}\)

\(=\dfrac{2\left(2x+3y\right)}{x-1}\cdot\dfrac{\left(1-x\right)\left(1+x+x^2\right)}{\left(2x+3y\right)^2}\)

\(=\dfrac{2\left(2x+3y\right)}{x-1}\cdot\dfrac{-\left(x-1\right)\left(1+x+x^2\right)}{\left(2x+3y\right)^2}\)

\(=\dfrac{-2\left(1+x+x^2\right)}{2x+3y}\)

ngoamthanghoa

1 tháng 1 2018

a) \(\dfrac{27-x^3}{5x+5}:\dfrac{2x-6}{3x+3}\)

\(=\dfrac{27-x^3}{5x+5}.\dfrac{3x+3}{2x-6}\)

\(=\dfrac{\left(3-x\right)\left(9+3x+x^2\right)}{5\left(x+1\right)}.\dfrac{3\left(x+1\right)}{2\left(x-3\right)}\)

\(=-\dfrac{3\left(x-3\right)\left(x^2+3x+9\right)\left(x+1\right)}{10\left(x+1\right)\left(x-3\right)}\)

\(=-\dfrac{3\left(x^2+3x+9\right)}{10}\)

b) \(4x^2-16:\dfrac{3x+6}{7x-2}\)

\(=4x^2-16.\dfrac{7x-2}{3x+6}\)

\(=\dfrac{4\left(x^2-4\right)\left(7x-2\right)}{3\left(x+2\right)}\)

\(=\dfrac{4\left(x-2\right)\left(x+2\right)\left(7x-2\right)}{3\left(x+2\right)}\)

\(=\dfrac{4\left(x-2\right)\left(7x-2\right)}{3}\)

c) \(\dfrac{3x^3+3}{x-1}:x^2-x+1\)

\(=\dfrac{3x^3+3}{x-1}.\dfrac{1}{x^2-x+1}\)

\(=\dfrac{3\left(x^3+1\right)}{\left(x-1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{3\left(x+1\right)\left(x^2-x+1\right)}{\left(x-1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{3\left(x+1\right)}{x-1}\)

d) \(\dfrac{4x+6y}{x-1}:\dfrac{4x^2+12xy+9y^2}{1-x^3}\)

\(=\dfrac{4x+6y}{x-1}.\dfrac{1-x^3}{4x^2+12xy+9y^2}\)

\(=\dfrac{2\left(2x+3y\right)\left(1-x\right)\left(1+x+x^2\right)}{\left(x-1\right)\left(2x+3y\right)^2}\)

\(=-\dfrac{2\left(2x+3y\right)\left(x-1\right)\left(x^2+x+1\right)}{\left(x-1\right)\left(2x+3y\right)^2}\)

\(=-\dfrac{2\left(x^2+x+1\right)}{2x+3y}\)

22 tháng 10 2020

1) ( x - 1 )3 - ( x + 3 )( x2 - 3x + 9 ) + 3( x2 - 4 ) = 2

⇔ x3 - 3x2 + 3x - 1 - ( x3 + 27 ) + 3x2 - 12 = 2

⇔ x3 + 3x - 13 - x3 - 27 = 2

⇔ 3x - 40 = 2

⇔ 3x = 42

⇔ x = 14

2) ( x2 - 4x )2 - 8( x2 - 4x ) + 15 = 0

Đặt t = x2 - 4x

pt ⇔ t2 - 8t + 15 = 0

    ⇔ t2 - 3t - 5t + 15 = 0

    ⇔ t( t - 3 ) - 5( t - 3 ) = 0

    ⇔ ( t - 3 )( t - 5 ) = 0

    ⇔ ( x2 - 4x - 3 )( x2 - 4x - 5 ) = 0

    ⇔ \(\orbr{\begin{cases}x^2-4x-3=0\\x^2-4x-5=0\end{cases}}\)

+) x2 - 4x - 3 = 0

⇔ ( x2 - 4x + 4 ) - 7 = 0

⇔ ( x - 2 )2 - ( √7 )2 = 0

⇔ ( x - 2 - √7 )( x - 2 + √7 ) = 0

⇔ \(\orbr{\begin{cases}x-2-\sqrt{7}=0\\x-2+\sqrt{7}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2+\sqrt{7}\\x=2-\sqrt{7}\end{cases}}\)

+) x2 - 4x - 5 = 0

⇔ x2 - 5x + x - 5 = 0

⇔ x( x - 5 ) + ( x - 5 ) = 0

⇔ ( x - 5 )( x + 1 ) = 0

⇔ x = 5 hoặc x = -1

Vậy ... 

22 tháng 10 2020

Bài làm

(x - 1)3 - (x + 3)(x2 - 3x + 9) + 3(x2 - 4) = 2

<=> x3 - 3x2 + 3x - 1 - (x3 + 33) + 3x2 - 12 = 2

<=> x3 - 3x2 + 3x - 1 - x3 - 27 + 3x2 - 12 - 2 = 0

<=> 3x - 42 = 0

<=> 3x = 42

<=> x = 14

Vậy nghiệm của phương trình là 4.

(x2 - 4x)2 - 8(x2 - 4x) + 15 = 0

Đặt x2 - 4x = t, ta có:

t2 - 8t + 15 = 0

<=> t2 - 3t - 5t + 15  = 0

<=> t(t - 3) - 5(t - 3) = 0

<=> (t - 5)(t - 3) = 0

<=> \(\orbr{\begin{cases}t-5=0\\t-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=5\\t=3\end{cases}}\)

Thay: t = 5 vào x2 - 4x ta được:

x2 - 4x = 5

<=> x2 - 4x - 5 = 0

<=> x2 - 5x + x - 5 = 0

<=> x(x - 5) + (x - 5) = 0

<=> (x + 1)(x - 5) = 0

<=> \(\orbr{\begin{cases}x+1=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=5\end{cases}}}\)

Thay: t = 3 vào x2 - 4x ta được:

x2 - 4x = 3

<=> x2 - 4x - 3 = 0

<=> x2 - 4x + 4 - 7 = 0

<=> (x - 2)2 - 7 = 0

<=> (x - 2)2 = V 7 

<=> x - 2 = + V 7 

<=> \(\orbr{\begin{cases}x-2=-7\\x-2=7\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\sqrt{7}+2\\x=\sqrt{7}+2\end{cases}}}\)

Vậy x = { -1; 5; \(-\sqrt{7}+2;\sqrt{7}+2\)}