Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (2x+3)(4x2-6x+9)-2(4x3-1)+(8x-1)=15
<=>8x3+27-8x3+2+8x-1=15
<=>8x+28=15
<=>8x=-13
<=>x=-13/8
b) (x+3)3-(x+9)(x2+27)-(5x-216) = 3x-4
<=>x3+9x2+27x+27-x3-27x-9x2-243-5x+216=3x-4
<=>-5x=3x-4
<=>8x=4
<=>x=1/2
b, ( x2 + x ) ( x2 + x + 1 )=6
=> ( x2 + x ) ( x2 + x + 1) - 6 = 0
=> ( x - 1 ) ( x + 2 ) ( x2 + x +3 ) = 0
=> x - 1= 0 => x= 1
=> x + 2 = 0 => x = -2
=> x2 + x + 3 = 0 => 12 - 4 ( 1.3 ) = -11 ( vô lí )
Vậy x = 1; x= -2
a) \(2x^3-x^2+3x+6=0\)
\(\left(2x^3-x^2\right)+\left(3x+6\right)=0\)
\(x^2\left(2-x\right)-3\left(2-x\right)=0\)
\(\left(x^2-3\right)\left(2-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-3=0\\2-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\sqrt{3}\\x=2\end{cases}}\)\(\)
vậy \(\orbr{\begin{cases}x=\sqrt{3}\\x=2\end{cases}}\)
a) \(\Leftrightarrow16x^2-\left(16x^2-40x+25\right)=15\)
\(\Leftrightarrow16^2-16x^2+40x+25-15=0\)
\(\Leftrightarrow40x+10=0\)
\(\Leftrightarrow x=-\frac{10}{40}=-\frac{1}{4}\)
b)\(\Leftrightarrow4x^2+12x+9-4\left(x^2-1\right)=49\)
\(\Leftrightarrow4x^2+12x+9-4x^2+4-49=0\)
\(\Leftrightarrow12x-36=0\)
\(\Leftrightarrow x=\frac{36}{12}=3\)
c) \(\Leftrightarrow9x^2-6x+1-\left(9x^2-12x+4\right)=0\)
\(\Leftrightarrow9x^2-6x+1-9x^2+12x-4=0\)
\(\Leftrightarrow6x-3=0\)
\(\Leftrightarrow x=\frac{3}{6}=\frac{1}{2}\)
nha Nhấp Đúng nha . Chúc bạn học tốt!!!!Cảm ơn !
a)\(\dfrac{27-x^3}{5x+5}:\dfrac{2x-6}{3x+3}\)
\(=\dfrac{\left(3-x\right)\left(9+3x+x^2\right)}{5\left(x+1\right)}:\dfrac{2\left(x-3\right)}{3\left(x+1\right)}\)
\(=\dfrac{\left(3-x\right)\left(9+3x+x^2\right)3\left(x+1\right)}{5\left(x+1\right)2\left(x-3\right)}\)
\(=\dfrac{-\left(x-3\right)\left(9+3x+x^2\right)3\left(x+1\right)}{5\left(x+1\right)2\left(x-3\right)}\)
\(=\dfrac{-\left(9+3x+x^2\right)3}{10}\)
b)\(4x^2-16:\dfrac{3x+6}{7x-2}\)
\(=4\left(x^2-4\right):\dfrac{3\left(x+2\right)}{7x-2}\)
\(=4\left(x-2\right)\left(x+2\right)\cdot\dfrac{7x-2}{3\left(x+2\right)}\)
\(=\dfrac{4\left(x-2\right)\left(x+2\right)\left(7x-2\right)}{3\left(x+2\right)}\)
\(=\dfrac{4\left(x-2\right)\left(7x-2\right)}{3}\)
c)\(\dfrac{3x^3+3}{x-1}:x^2-x+1\)
\(=\dfrac{3\left(x^3+1\right)}{x-1}:x^2-x+1\)
\(=\dfrac{3\left(x+1\right)\left(x^2-x+1\right)}{x-1}\cdot\dfrac{1}{x^2-x+1}\)
\(=\dfrac{3\left(x+1\right)}{x-1}\)
d)\(\dfrac{4x+6y}{x-1}:\dfrac{4x^2+12xy+9y^2}{1-x^3}\)
\(=\dfrac{2\left(2x+3y\right)}{x-1}\cdot\dfrac{\left(1-x\right)\left(1+x+x^2\right)}{\left(2x+3y\right)^2}\)
\(=\dfrac{2\left(2x+3y\right)}{x-1}\cdot\dfrac{-\left(x-1\right)\left(1+x+x^2\right)}{\left(2x+3y\right)^2}\)
\(=\dfrac{-2\left(1+x+x^2\right)}{2x+3y}\)
a) \(\dfrac{27-x^3}{5x+5}:\dfrac{2x-6}{3x+3}\)
\(=\dfrac{27-x^3}{5x+5}.\dfrac{3x+3}{2x-6}\)
\(=\dfrac{\left(3-x\right)\left(9+3x+x^2\right)}{5\left(x+1\right)}.\dfrac{3\left(x+1\right)}{2\left(x-3\right)}\)
\(=-\dfrac{3\left(x-3\right)\left(x^2+3x+9\right)\left(x+1\right)}{10\left(x+1\right)\left(x-3\right)}\)
\(=-\dfrac{3\left(x^2+3x+9\right)}{10}\)
b) \(4x^2-16:\dfrac{3x+6}{7x-2}\)
\(=4x^2-16.\dfrac{7x-2}{3x+6}\)
\(=\dfrac{4\left(x^2-4\right)\left(7x-2\right)}{3\left(x+2\right)}\)
\(=\dfrac{4\left(x-2\right)\left(x+2\right)\left(7x-2\right)}{3\left(x+2\right)}\)
\(=\dfrac{4\left(x-2\right)\left(7x-2\right)}{3}\)
c) \(\dfrac{3x^3+3}{x-1}:x^2-x+1\)
\(=\dfrac{3x^3+3}{x-1}.\dfrac{1}{x^2-x+1}\)
\(=\dfrac{3\left(x^3+1\right)}{\left(x-1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{3\left(x+1\right)\left(x^2-x+1\right)}{\left(x-1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{3\left(x+1\right)}{x-1}\)
d) \(\dfrac{4x+6y}{x-1}:\dfrac{4x^2+12xy+9y^2}{1-x^3}\)
\(=\dfrac{4x+6y}{x-1}.\dfrac{1-x^3}{4x^2+12xy+9y^2}\)
\(=\dfrac{2\left(2x+3y\right)\left(1-x\right)\left(1+x+x^2\right)}{\left(x-1\right)\left(2x+3y\right)^2}\)
\(=-\dfrac{2\left(2x+3y\right)\left(x-1\right)\left(x^2+x+1\right)}{\left(x-1\right)\left(2x+3y\right)^2}\)
\(=-\dfrac{2\left(x^2+x+1\right)}{2x+3y}\)
1) ( x - 1 )3 - ( x + 3 )( x2 - 3x + 9 ) + 3( x2 - 4 ) = 2
⇔ x3 - 3x2 + 3x - 1 - ( x3 + 27 ) + 3x2 - 12 = 2
⇔ x3 + 3x - 13 - x3 - 27 = 2
⇔ 3x - 40 = 2
⇔ 3x = 42
⇔ x = 14
2) ( x2 - 4x )2 - 8( x2 - 4x ) + 15 = 0
Đặt t = x2 - 4x
pt ⇔ t2 - 8t + 15 = 0
⇔ t2 - 3t - 5t + 15 = 0
⇔ t( t - 3 ) - 5( t - 3 ) = 0
⇔ ( t - 3 )( t - 5 ) = 0
⇔ ( x2 - 4x - 3 )( x2 - 4x - 5 ) = 0
⇔ \(\orbr{\begin{cases}x^2-4x-3=0\\x^2-4x-5=0\end{cases}}\)
+) x2 - 4x - 3 = 0
⇔ ( x2 - 4x + 4 ) - 7 = 0
⇔ ( x - 2 )2 - ( √7 )2 = 0
⇔ ( x - 2 - √7 )( x - 2 + √7 ) = 0
⇔ \(\orbr{\begin{cases}x-2-\sqrt{7}=0\\x-2+\sqrt{7}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2+\sqrt{7}\\x=2-\sqrt{7}\end{cases}}\)
+) x2 - 4x - 5 = 0
⇔ x2 - 5x + x - 5 = 0
⇔ x( x - 5 ) + ( x - 5 ) = 0
⇔ ( x - 5 )( x + 1 ) = 0
⇔ x = 5 hoặc x = -1
Vậy ...
Bài làm
(x - 1)3 - (x + 3)(x2 - 3x + 9) + 3(x2 - 4) = 2
<=> x3 - 3x2 + 3x - 1 - (x3 + 33) + 3x2 - 12 = 2
<=> x3 - 3x2 + 3x - 1 - x3 - 27 + 3x2 - 12 - 2 = 0
<=> 3x - 42 = 0
<=> 3x = 42
<=> x = 14
Vậy nghiệm của phương trình là 4.
(x2 - 4x)2 - 8(x2 - 4x) + 15 = 0
Đặt x2 - 4x = t, ta có:
t2 - 8t + 15 = 0
<=> t2 - 3t - 5t + 15 = 0
<=> t(t - 3) - 5(t - 3) = 0
<=> (t - 5)(t - 3) = 0
<=> \(\orbr{\begin{cases}t-5=0\\t-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=5\\t=3\end{cases}}\)
Thay: t = 5 vào x2 - 4x ta được:
x2 - 4x = 5
<=> x2 - 4x - 5 = 0
<=> x2 - 5x + x - 5 = 0
<=> x(x - 5) + (x - 5) = 0
<=> (x + 1)(x - 5) = 0
<=> \(\orbr{\begin{cases}x+1=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=5\end{cases}}}\)
Thay: t = 3 vào x2 - 4x ta được:
x2 - 4x = 3
<=> x2 - 4x - 3 = 0
<=> x2 - 4x + 4 - 7 = 0
<=> (x - 2)2 - 7 = 0
<=> (x - 2)2 = V 7
<=> x - 2 = + V 7
<=> \(\orbr{\begin{cases}x-2=-7\\x-2=7\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\sqrt{7}+2\\x=\sqrt{7}+2\end{cases}}}\)
Vậy x = { -1; 5; \(-\sqrt{7}+2;\sqrt{7}+2\)}