K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2018

\(\frac{-21}{13}\)x + \(\frac{1}{3}\)\(\frac{-2}{3}\)

 \(\frac{-21}{13}\)x            =  \(\frac{-2}{3}\)-  \(\frac{1}{3}\)

  \(\frac{-21}{13}\)x           =\(\frac{-2}{3}\)\(\frac{1}{3}\)

    \(\frac{-21}{13}\)x         =  ( -1 )

                   x          =  (-1) :\(\frac{-21}{13}\)

                  x            =  \(\frac{13}{21}\)

Học tốt ^-^

8 tháng 7 2016

a.2/3x+5/7=3/10

2/3x=3/10-5/7

   2/3x=-29/70

        x=-87/140

  1. a, \(\frac{2}{3}x+\frac{5}{7}=\frac{3}{10}\Rightarrow\frac{2}{3}x=\frac{3}{10}-\frac{5}{7}=\frac{-29}{70}\Rightarrow x=\frac{-29}{70}:\frac{2}{3}=\frac{-87}{140}\)
  2. b, \(\frac{3}{4}x-\frac{1}{8}=\frac{3}{7}\Rightarrow\frac{3}{4}x=\frac{3}{7}+\frac{1}{8}=\frac{31}{56}\Rightarrow x=\frac{31}{56}:\frac{3}{4}=\frac{31}{42}\) 

c, \(\frac{-21}{13}x+\frac{1}{3}=\frac{2}{3}\Rightarrow\frac{-21}{13}x=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\Rightarrow x=\frac{1}{3}:\frac{-21}{3}=\frac{-1}{21}\)​ 

2 tháng 7 2016

b)\(\frac{3}{4}x-\frac{1}{8}=\frac{3}{7}\)\(\Leftrightarrow\frac{3}{4}x=\frac{3}{7}+\frac{1}{8}=\frac{31}{56}\)\(\Leftrightarrow x=\frac{31}{56}:\frac{3}{4}=\frac{31}{42}\)

c)\(-\frac{21}{13}x+\frac{1}{3}=\frac{2}{3}\Leftrightarrow-\frac{21}{13}x=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\Leftrightarrow x=\frac{1}{3}:-\frac{21}{13}=-\frac{13}{63}\)

15 tháng 1 2019

\(-\frac{21}{13x}+\frac{1}{3}=-\frac{2}{3}\)

\(\frac{-21}{13x}=\frac{-2}{3}-\frac{1}{3}\)

\(\frac{-21}{13x}=\frac{-3}{3}\)

\(\frac{-21}{13x}=\frac{-21}{21}\)

=> 13x = 21

 x = 21 : 13

x = 21/13

15 tháng 1 2019

\(\Rightarrow\)\(\frac{-21}{13x}=\)\(\frac{-2}{3}-\frac{1}{3}=-1\)\(\Rightarrow\frac{21}{13x}=1\)\(\Rightarrow13x=21\Rightarrow x=\frac{21}{13}\)

Vậy x=\(\frac{21}{13}\)

8 tháng 11 2016

a) x/7 = y/13

k = 40/20 = 2

x = 26

y = 14

b) tuog tu

8 tháng 11 2016

a) Cách 1: Từ \(13x=7y\) suy ra \(\frac{x}{7}=\frac{y}{13}\). Theo tính chất của dãy các tỉ số bằng nhau ta có: \(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\).

Từ đó ta được: \(x=7.2=12;y=13.2=26\).

Cách 2: Đặt \(\frac{x}{7}=\frac{y}{13}=k\) ta có: \(x=7k,y=13k\).

Thay vào hệ thức \(x+y=40\) ta được \(7k+13k=40\), suy ra \(k=2.\)

Do đó \(x=7.2=14,y=13.2=26\)

b) Làm tương tự câu a) ta có:

\(\frac{x}{19}=\frac{y}{21}=\frac{x-y}{19-21}=\frac{4}{-2}=-2\)

Từ đó \(x=19.\left(-2\right)=-38,y=21.\left(-2\right)=-42\)

7 tháng 10 2018

\(a)13x\left(x-\dfrac{3}{7}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}13x=0\\x-\dfrac{3}{7}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{7}\end{matrix}\right.\)

Vậy \(x\in\left\{0;\dfrac{3}{7}\right\}\)

b: =>x(5x-1/3)=0

=>x=0 hoặc x=1/15

e: =>x^2(x+3)^2=x^2 và x>=0

\(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\x^2\left(x+3-1\right)\left(x+3+1\right)=0\end{matrix}\right.\Leftrightarrow x=0\)

5 tháng 12 2017

Câu 1 : \(\frac{x+2}{18}+\frac{x+2}{19}+\frac{x+2}{20}=\frac{x+2}{21}+\frac{x+2}{22}\)
      => \(\frac{x+2}{18}+\frac{x+2}{19}+\frac{x+2}{20}-\frac{x+2}{21}-\frac{x+2}{22}=0\)
      =>  x+2 . ( \(\frac{1}{18}+\frac{1}{19}+\frac{1}{20}-\frac{1}{21}-\frac{1}{22}\)) = 0
     Vì  \(\frac{1}{18}+\frac{1}{19}_{ }+\frac{1}{20}-\frac{1}{21}-\frac{1}{22}\ne0\)nên  x+2=0 
                                                                              => x= 0 - 2 = -2
                       Vậy x = -2

21 tháng 5 2015

\(\Rightarrow\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{5.6}+\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{x.\left(x+1\right)}=2.\left(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x.\left(x+1\right)}\right)\)

\(=2.\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}\right)=2.\left(\frac{1}{5}-\frac{1}{x+1}\right)=\frac{2}{5}-\frac{2}{x+1}=\frac{3}{10}\)

=> \(\frac{2}{x+1}\)\(\frac{1}{10}=\frac{2}{20}\)

=> x +1 = 20 => x = 19

24 tháng 7 2017

bạn trên sai rồi, nếu đã nhân đôi lên tất cả thì cx phải nhân luôn con cuối chứ

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN.