Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thay x=2014 ta có:
\(f\left(x\right)=2014^{17}-2015.2014^{16}+2015.2014^{15}-2015.2014^{14}+...+2015.2014-1 \)
=2014^17 - (2014+1).2014^16 + (2014+1).2014^15 - (2014+1).2014^14 + ... + (2014+1).2014-1
=2014^17 - 2014^17 - 2014^16 + 2014^16 + 2014^15 - 2014^15 + 2014^14 + ...-2014^3 - 2014^2 + 2014^2 + 2014 -1
=2014-1=2013
f)
\(A=\sqrt{\frac{\left(x+1\right)}{x-3}}=\sqrt{1+\frac{4}{x-3}}\)
x-3={-4)=> x=-1
vì 2>0\(\Rightarrow|x-2014|+|x-2015|+|x-2016|>0\)
\(\Rightarrow|x-2014|+|x-2015|+|x-2016|\)
\(\Rightarrow x-2014+x-2015+x-2016=2\)
\(\Rightarrow x+x+x-2014-2015-2016=2\Rightarrow3x-6045=2\)
\(\Rightarrow3x=6047\Rightarrow x=6047:3=\frac{6047}{3}\)
bạn jj vừa trả lời ơi, cho mik hỏi tí là vì sao bn suy ra đc dòng 3
a)
Ta có: \(\frac{x+y}{2014}\ne\frac{x-y}{2016}\)
\(\Leftrightarrow2016x+2016y=2014x-2014y\)
\(\Leftrightarrow2x=-4030y\)
\(\Leftrightarrow x=-2015y\)
Thay \(x=-2015y\)vào \(\frac{x+y}{2014}=\frac{xy}{2015}\)ta được:
\(\Leftrightarrow\frac{-2015+y}{2014}=\frac{-2015y}{2015}\)
\(\Leftrightarrow\frac{-2014y}{2014}=\frac{-2015y^2}{2015}\)
\(\Leftrightarrow-y=-y^2\)
\(\Leftrightarrow y-y^2=0\)
\(\Leftrightarrow y\left(1-y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y=0\\1-y=0\end{cases}}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}\)
Trường hợp \(y=0\):
\(y=0\Rightarrow x.y=-2015.0=0\)
Trường hợp \(y=1\):
\(y=1\Rightarrow x.y=-2015.1=-2015\)
d)\(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}=-4\)
\(\Rightarrow\frac{x+2}{327}+1+\frac{x+3}{326}+1+\frac{x+4}{325}+1+\frac{x+5}{324}+\frac{4\left(x+329\right)}{\left(x+329\right)}=0\)
\(\Rightarrow\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{\frac{1}{4}\cdot\left(x+329\right)}=0\)
\(\Rightarrow\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{\frac{1}{4}\left(x+329\right)}\right)=0\)
\(\Rightarrow x+329=0\).Do \(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{\frac{1}{4}\left(x+329\right)}\ne0\)
=>x=-329
e)bn kiểm tra lại đề
a) \(x\left(x-2016\right)+2015\left(2016-x\right)=0\)
\(x\left(x-2016\right)-2015\left(x-2016\right)=0\)
\(\left(x-2015\right)\left(x-2016\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2015=0\\x-2016=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2015\\x=2016\end{cases}}}\)
Vậy x= 2015 và x= 2016
b) \(-5x\left(x-15\right)+\left(15-x\right)=0\)
\(-5x\left(x-15\right)-\left(x-15\right)=0\)
\(\left(-5x-1\right)\left(x-15\right)=0\)
\(\Rightarrow\orbr{\begin{cases}-5x-1=0\\x-15=0\end{cases}\Rightarrow\orbr{\begin{cases}-5x=1\\x=15\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{5}\\x=15\end{cases}}}\)
Vậy x= -1/5 và x= 15
d) \(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}=-4\)
Ta có:
\(\left\{{}\begin{matrix}\left(x-15\right)^2=\left|x-15\right|^2\\\left|15-x\right|=\left|x-15\right|\end{matrix}\right.\)
\(\Leftrightarrow2015\left|x-15\right|+\left|x-15\right|^2-2014\left|x-15\right|=0\)
\(\Leftrightarrow\left|x-15\right|+\left|x-15\right|^2=0\Leftrightarrow\left|x-15\right|\left(\left|x-15\right|-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=15\\x=16\\x=14\end{matrix}\right.\)
thank bạn