Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2003-\left|x-2003\right|=x\)
\(\Leftrightarrow\left|x-2003\right|=2003-x\left(1\right)\)
+ ) Nếu : \(x\ge2003\) thì ( 1 ) \(\Leftrightarrow x-2003=2003-x\)
\(\Leftrightarrow2x=2.2003\)
\(\Leftrightarrow x=2003\left(nhận\right)\)
+ ) Nếu \(x< 2003\) thì ( 1 ) \(\Leftrightarrow2003-x=2003-x\)
\(\Leftrightarrow0.x=0\)
Vậy pt có vô số nghiệm với \(x< 2003\)
TH1: \(6-x=0\)
\(\Rightarrow x=6-0=6\)
TH2: \(6-x\ne0\)
\(\Rightarrow x=\frac{\left(6-x\right)^{2003}}{\left(6-x\right)^{2003}}=1\)
Vậy \(\orbr{\begin{cases}x=6\\x=1\end{cases}}\)
x = 6 và x = 1
t i c k nhé!!!5746756857876698796785687987698796867
(x+4/2000 + 1)+(x+3/2001 + 1) = (x+2/2002 + 1)+(x+1/2003)+1
(x+2004/2000) + (x+2004/2001) = (x+2004/2002) + (x+2004/2003)
(x+2004).(1/2000+1/2001) = (x+2004).(1/2002+1/2003)
+ Với x+2004=0 suy ra x=-2004. Ta có 0.(1/2000+1/2001)=0.(1/2002+1/2003), đúng
+ Với x+2004 khác 0 thì (x+2004).(1/2000+1/2001) = (x+2004).(1/2002+1/2003)
1/2000+1/2001 = 1/2002+1/2003, vô lí vì 1/2000+1/2001 > 1/2002+1/2003
Vậy x=-2004
\(PT\Leftrightarrow\frac{x+4+2000}{2000}+\frac{x+3+2001}{2001}=\frac{x+2+2002}{2002}+\frac{x+1+2003}{2003}\)
<=> \(\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
<=> \(\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
<=> x + 2004 = 0
<=> x = -2004.
\(\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2003}+1\right)\)
\(\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)
\(\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
\(x+2004=0\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\right)\)
\(\Rightarrow x=-2004\)
a: |x|+2003>=2003
=>A<=2022/2003
Dấu = xảy ra khi x=0
b: |x|+1>=1
=>(|x|+1)^10>=1
=>B>=2010
Dấu = xảy ra khi x=0
Ta có: \(\left(3x-7\right)^{2005}=\left(3x-7\right)^{2003}\)
\(\Leftrightarrow\left(3x-7\right)^{2005}-\left(3x-7\right)^{2003}=0\)
\(\Leftrightarrow\left(3x-7\right)^{2003}\left[\left(3x-7\right)^2-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(3x-7\right)^{2003}=0\\\left(3x-7\right)^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x\in\left\{\frac{8}{3};2\right\}\end{cases}}\)
Vậy \(x\in\left\{\frac{7}{3};\frac{8}{3};2\right\}\)
\(\left(3x-7\right)^{2005}=\left(3x-7\right)^{2003}\)
\(\Rightarrow\left(3x-7\right)^{2005}-\left(3x-7\right)^{2003}=0\)
\(\Leftrightarrow\left(3x-7\right)^{2003}[\left(3x-7\right)^2-1]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(3x-7\right)^{2003}=0\\\left(3x-7\right)^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x-7=0\\3x-7=1\end{cases}}\)hoặc \(3x-7=-1\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x=\frac{8}{3}\end{cases}}\)hoặc \(x=2\)
Vậy ...............................
Ta có: x + (x + 1) + (x + 2) +...+ (x + 2003) = 2004
<=> ( x + x + x + .....+ x ) + (1 + 2 + ...... + 2003) = 2004
<=> 2004x + 2007006 = 2004
=> 2004x = 2004 - 2007006
=> 2004x = -2005002
=> x = -2005002 : 2004
=> x = -1000,5