Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C(x)= 2x-3=0 hoac 5x+7=0
2x=0+3 5x=0-7
2x=3 5x=-7
x=3:2 x=-7:5
x=1.5 x=-1.4
a.
\(\left(2x-3\right)\times\left(5x+7\right)=0\)
TH1:
\(2x-3=0\)
\(2x=3\)
\(x=\frac{3}{2}\)
TH2:
\(5x+7=0\)
\(5x=-7\)
\(x=-\frac{7}{5}\)
Vậy \(C\left(x\right)\) có nghiệm là \(\frac{3}{2}\) hoặc \(-\frac{7}{5}\)
b.
\(\left(15x^5+4x^2-8\right)-\left(15x^5-x-8\right)=0\)
\(15x^5+4x^2-8-15x^5+x+8=0\)
\(\left(15x^5-15x^5\right)+4x^2+x+\left(8-8\right)=0\)
\(x\left(4x-1\right)=0\)
TH1:
\(x=0\)
TH2:
\(4x-1=0\)
\(4x=1\)
\(x=\frac{1}{4}\)
Vậy \(D\left(x\right)\) có nghiệm là \(0\) hoặc \(\frac{1}{4}\)
c.
\(\left(5x^7-8x^2\right)-\left(4x^7+4^2\right)-\left(x^7+4\right)=0\)
\(5x^7-8x^2-4x^7-16-x^7-4=0\)
\(\left(5x^7-4x^7-x^7\right)-8x^2-\left(16-4\right)=0\)
\(-8x^2-12=0\)
\(-8x^2=12\)
\(x^2=-\frac{12}{8}\)
mà \(x^2\ge0\) với mọi x
=> \(E\left(x\right)\) vô nghiệm
\(a,C\left(x\right)=\left(2x-3\right)\left(5x+7\right)=0\)
\(\Leftrightarrow\) \(\left[\begin{array}{nghiempt}2x-3=0\\5x+7=0\end{array}\right.\) \(\Leftrightarrow\) \(\left[\begin{array}{nghiempt}x=\frac{3}{2}\\x=-\frac{7}{5}\end{array}\right.\)
Vậy \(x=\frac{3}{2}\) và \(x=-\frac{7}{5}\) là nghiệm của đa thức C(x)
\(b,D\left(x\right)=\left(15x^5+4x^2-8\right)-\left(15x^5-x-8\right)=0\)
\(\Leftrightarrow15x^5+4x^2-8-15x^5+x+8=0\)
\(\Leftrightarrow4x^2+x=0\) \(\Leftrightarrow x\left(4x+1\right)=0\) \(\Leftrightarrow\) \(\left[\begin{array}{nghiempt}x=0\\4x+1=0\end{array}\right.\) \(\Leftrightarrow\) \(\left[\begin{array}{nghiempt}x=0\\x=-\frac{1}{4}\end{array}\right.\)
Vậy \(x=0\) và \(x=-\frac{1}{4}\) là nghiệm đa thức D(x)
\(c,E\left(x\right)=\left(5x^7-8x^2\right)-\left(4x^7+4x^4\right)-\left(x^7+4\right)=0\)
\(\Leftrightarrow5x^7-8x^2-4x^7-4x^4-x^7-4=0\)
\(\Leftrightarrow-8x^2-4x^4-4=0\)
\(\Leftrightarrow-4\left(2x^2+x^4+1\right)=0\)
\(\Leftrightarrow2x^2+x^4+1=0\) \(\Leftrightarrow x^4+x^2+x^2+1=0\)
\(\Leftrightarrow x^2\left(x^2+1\right)+\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)^2=0\) \(\Leftrightarrow x^2+1=0\) \(\Leftrightarrow x^2=-1\) \(\Rightarrow x\in\varnothing\)
Vậy E(x) vô nghiệm
I15x-7I=I15x+7I
TH1: 15x-7=15x+7 => -7=7 ( vô nghiệm)
TH2: 15x-7=-15x-7 <=> 30x=0 <=> x=0
thử lại thấy thỏa mãn
KL: vạy x=0
Áp dụng tc dstbn:
\(\dfrac{15x-21}{7}=\dfrac{3y+2}{5}=\dfrac{5z-4}{3}=\dfrac{15x-21+15y+10-15z+12}{7+5\cdot5-3\cdot3}=\dfrac{15\left(x+y-z\right)-21+10+12}{7+25-9}=\dfrac{45-21+10+12}{23}=\dfrac{46}{23}=2\\ \Rightarrow\left\{{}\begin{matrix}15x-21=14\\3y+2=10\\5z-4=6\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{7}{3}\\y=\dfrac{8}{3}\\z=2\end{matrix}\right.\)
x=0
x=0.