Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2014}{2015}\)
\(\Rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2014}{2015}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1007}{2015}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1007}{2015}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{4030}\)
=>x+1=4030
=>x=4029
vậy x=4029
\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2013}{2015}\)
\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2013}{2015}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2013}{2015}:2\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2013}{4030}\)
tự làm tiếp nhé mk ăn cơm đã
Lời giải:
$1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x(x+1)}=\frac{2014}{2015}$
$\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x(x+1)}=\frac{2014}{2015}$
$\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x(x+1)}=\frac{1007}{2015}$
$1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1007}{2015}$
$1-\frac{1}{x+1}=\frac{1007}{2015}$
$\frac{1}{x+1}=1-\frac{1007}{2015}=\frac{1008}{2015}$
$\Rightarrow x+1=\frac{2015}{1008}$
$\Rightarrow x=\frac{1007}{1008}$
\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x(x+1)}=\frac{2014}{2015}$