Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) |x|=x+2
=> \(\left[{}\begin{matrix}x=x+2\\x=-x-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}0=2\left(voli\right)\\2x=-2\Rightarrow x=-1\end{matrix}\right.\)
vậy x=-1
c;b tương tự
2) \(\left|x-\dfrac{3}{2}\right|=\left|\dfrac{5}{2}-x\right|\)
=> \(\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{5}{2}-x\\x-\dfrac{3}{2}=x-\dfrac{5}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=4\Rightarrow x=2\\0=-1\left(voli\right)\end{matrix}\right.\)
vậy x=2
Nhiều quá, từng bài 1 nhé, bài nào làm được, tớ sẽ cố gắng.
bài 2:
a) \(x>2x\Leftrightarrow x-2x>0\Leftrightarrow-x>0\Leftrightarrow x< 0\)
Kl: x<0
b) \(a+x< a\Leftrightarrow x< 0\)
Kl: x<0
c) \(x^3>x^2\Leftrightarrow x^3-x^2>0\Leftrightarrow x^2\left(x-1\right)>0\) (*)
Mà x^2 > 0 \(\Rightarrow\) (*) \(\Leftrightarrow x-1>0\Leftrightarrow x>1\)
Kl: x>1
Câu 4:
a) \(1-2x< 7\Leftrightarrow2x>-6\Leftrightarrow x>3\)
Kl: x>3
b) \(\left(x-1\right)\left(x-2\right)>0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\\x-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\\x-2< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x< 1\\x< 2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>2\\x< 1\end{matrix}\right.\)
Kl: x>2 hoặc x<1
c) \(\left(x-2\right)^2\left(x+1\right)\left(x+4\right)< 0\Leftrightarrow\left(x+1\right)\left(x+4\right)< 0\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1>0\\x+4< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1< 0\\x+4>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-1\\x< -4\end{matrix}\right.\\\left\{{}\begin{matrix}x< -1\\x>-4\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-1< x< -4\left(vô-lý\right)\\-4< x< -1\end{matrix}\right.\) \(\Leftrightarrow-4< x< -1\)
Kl: -4<x<-1
d) ĐK: x khác 9\(\dfrac{x^2\left(x+3\right)}{x-9}< 0\Leftrightarrow x^2\left(x+3\right)\left(x-9\right)< 0\Leftrightarrow\left(x+3\right)\left(x-9\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3>0\\x-9< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3< 0\\x-9>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-3\\x< 9\end{matrix}\right.\\\left\{{}\begin{matrix}x< -3\\x>9\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-3< x< 9\left(N\right)\\9< x< -3\left(vô-lý\right)\end{matrix}\right.\) \(\Leftrightarrow-3< x< 9\)
Kl: -3<x<9
e) Đk: x khác 0
\(\dfrac{5}{x}< 1\Leftrightarrow\dfrac{5}{x}< \dfrac{5}{5}\Leftrightarrow x>5\left(N\right)\)
KL: x >5
f) ĐK: x khác 1
\(\dfrac{2x-5}{x-1}< 0\Leftrightarrow\left(2x-5\right)\left(x-1\right)< 0\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-5>0\\x-1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-5< 0\\x-1>0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{5}{2}\\x< 1\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{5}{2}\\x>1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{5}{2}< x< 1\left(vô-lý\right)\\1< x< \dfrac{5}{2}\left(N\right)\end{matrix}\right.\)
Kl: 1< x< 5/2
1. \(A=x^{15}+3x^{14}+5=x^{14}\left(x+3\right)+5\)
Thay \(x+3=0\)vào đa thức ta được:\(A=x^{14}.0+5=5\)
2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)
Thay \(x=-3\)vào đa thức ta được: \(B=\left[x^{2006}\left(-3+3\right)+1\right]^{2017}=\left(x^{2006}.0+1\right)^{2017}=1^{2017}=1\)
3. \(C=21x^4+12x^3-3x^2+24x+15=3x\left(7x^3+4x^2-x+8\right)+15\)
Thay \(7x^3+4x^2-x+8=0\)vào đa thức ta được: \(C=3x.0+15=15\)
4. \(D=-16x^5-28x^4+16x^3-20x^2+32x+2007\)
\(=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)
Thay \(-4x^4-7x^3+4x^2-5x+8=0\)vào đa thức ta được: \(D=4x.0+2007=2007\)
1. \(A=x^{15}+3x^{14}+5\)
\(A=x^{14}\left(x+3\right)+5\)
\(A=x^{14}+5\)
2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}\)
\(B=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)
\(B=\left[x^{2006}.\left(-3+3\right)+1\right]^{2007}\)
\(B=1^{2007}=1\)
3. \(C=21x^4+12x^3-3x^2+24x+15\)
\(C=3x\left(7x^2+4x^2-x+8+5\right)\)
\(C=3x\left(0+5\right)\)
\(C=15x\)
4. \(D=-16x^5-28x^4+16x^3-20x^2+32+2007\)
\(D=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)
\(D=4x.0+2007\)
\(D=2007\)
\(x+\left(\frac{1}{2}\right)^3=\frac{1}{4}\)
\(x+\frac{1}{8}=\frac{1}{4}\)
\(x=\frac{1}{4}-\frac{1}{8}\)
\(x=\frac{4}{16}-\frac{2}{16}\)
\(x=\frac{1}{8}\)
Vậy \(x=\frac{1}{8}\)
b) \(\left(\frac{2}{3}\right)^3-x=\frac{1}{3}\)
\(\frac{8}{27}-x=\frac{1}{3}\)
\(x=\frac{8}{27}-\frac{1}{3}\)
\(x=\frac{8}{27}-\frac{9}{27}\)
\(x=-\frac{1}{27}\)
Vậy \(x=-\frac{1}{27}\)
c) \(x.\left(-\frac{1}{2}\right)^4=\frac{3}{8}\)
\(x.\frac{1}{16}=\frac{3}{8}\)
\(x=\frac{3}{8}:\frac{1}{16}\)
\(x=\frac{3}{8}.16\)
\(x=6\)
c) \(\left(\frac{1}{2}\right)^3.x=\left(\frac{1}{2}\right)^5\)
\(x=\left(\frac{1}{2}\right)^5:\left(\frac{1}{2}\right)^3\)
\(x=\left(\frac{1}{2}\right)^2\)
\(x=\frac{1}{4}\)
Vậy \(x=\frac{1}{4}\)
Chúc bạn học tốt !!!
a) \(x+\left(\frac{1}{2}\right)^3=\frac{1}{4}\Leftrightarrow x+\frac{1}{8}=\frac{1}{4}\Leftrightarrow x=\frac{1}{4}-\frac{1}{8}\Leftrightarrow x=\frac{1}{8}\)
b) \(\left(\frac{2}{3}\right)^3-x=\frac{1}{3}\Leftrightarrow\frac{8}{27}-x=\frac{1}{3}\Leftrightarrow-x=\frac{1}{3}-\frac{8}{27}\Leftrightarrow-x=\frac{1}{27}\Leftrightarrow x=-\frac{1}{27}\)
c) \(x.\left(\frac{-1}{2}\right)^4=\frac{3}{8}\Leftrightarrow x.\frac{1}{16}=\frac{3}{8}\Leftrightarrow x=\frac{3}{8}:\frac{1}{16}\Leftrightarrow x=6\)
d) \(\left(\frac{1}{2}\right)^2.x=\left(\frac{1}{2}\right)^5\Leftrightarrow\frac{1}{8}.x=\frac{1}{32}\Leftrightarrow x=\frac{1}{32}:\frac{1}{8}\Leftrightarrow x=\frac{1}{4}\)
a)\(\frac{x+3}{x+5}=7\Leftrightarrow x+3=7\left(x+5\right)\)
\(\Leftrightarrow x+3=7x+35\)
\(\Leftrightarrow-6x=32\)
\(\Leftrightarrow x=-\frac{16}{3}\)
b)\(\frac{2x-1}{3x+5}=-\frac{2}{3}\)
\(\Leftrightarrow3\left(2x-1\right)=-2\left(3x+5\right)\)
\(\Leftrightarrow6x-3=-6x-10\)
\(\Leftrightarrow12x=-7\)
\(\Leftrightarrow x=-\frac{7}{12}\)
c)\(\frac{x+1}{4}=\frac{9}{x+1}\Leftrightarrow\left(x+1\right)^2=36\)
\(\Leftrightarrow\left(x+1\right)^2=6^2\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=6\\x+1=-6\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-7\end{cases}}}\)
d)\(\frac{6x-1}{2x+3}=\frac{3x}{x+2}\)
\(\Leftrightarrow\left(6x-1\right)\left(x+2\right)=3x\left(2x+3\right)\)
\(\Leftrightarrow6x^2+12x-x-2=6x^2+9x\)
\(\Leftrightarrow2x=2\Leftrightarrow x=1\)
a, Ta có : \(P\left(x\right)=5x^4-3x^2+3x-1-5x^4+4x^2-x-x^2+2\)
\(=2x+1\)
b,* Thay x = 0 vào biểu thức trên ta có : \(2.0+1=1\)
Vậy nếu x = 0 thì biểu thức nhận giá trị 1
* Thay x = -1 vào biểu thức trên ta có : \(2\left(-1\right)+1=-2+1=-1\)
Vậy nếu x = -1 thì biểu thức nhận giá trị là -1
* Thay x = 1/2 vào biểu thức trên ta có : \(2.\frac{1}{2}+1=1+1=2\)
Vậy nếu x = 1/2 thì biểu thức nhận giá trị là 2
c, Ta có \(P\left(x\right)=0\)hay \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)
Ta có \(P\left(x\right)=1\)hay \(2x+1=1\Leftrightarrow x=0\)