Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{x-6}{7}+\dfrac{x-7}{8}+\dfrac{x-8}{9}=\dfrac{x-9}{10}+\dfrac{x-10}{11}+\dfrac{x-11}{12}\)
\(\Leftrightarrow\left(\dfrac{x-6}{7}+1\right)+\left(\dfrac{x-7}{8}+1\right)+\left(\dfrac{x-8}{9}+1\right)=\left(\dfrac{x-9}{10}+1\right)+\left(\dfrac{x-10}{11}+1\right)+\left(\dfrac{x-11}{12}+1\right)\)
=>x+1=0
hay x=-1
c: |x-2|=13
=>x-2=13 hoặc x-2=-13
=>x=15 hoặc x=-11
d: \(\Leftrightarrow3\left|x-2\right|+4\left|x-2\right|=2-\dfrac{1}{3}=\dfrac{5}{3}\)
=>7|x-2|=5/3
=>|x-2|=5/21
=>x-2=5/21 hoặc x-2=-5/21
=>x=47/21 hoặc x=37/21
1. So sánh
a) \(25^{50}\) và \(2^{300}\)
\(25^{50}=25^{1.50}=\left(25^1\right)^{50}=25^{50}\)
\(2^{300}=2^{6.50}=\left(2^6\right)^{50}=64^{50}\)
Vì \(25< 64\) nên \(25^{50}< 64^{50}\)
Vậy \(25^{50}< 2^{300}\)
b) \(625^{15}\) và \(12^{45}\)
\(625^{15}=625^{1.15}=\left(625^1\right)^{15}=625^{15}\)
\(12^{45}=12^{3.15}=\left(12^3\right)^{15}=1728^{15}\)
Vì \(625< 1728\) nên \(625^{15}< 1728^{15}\)
Vậy \(625^{15}< 12^{45}\)
1.So sánh
a)\(25^{50}\) và \(2^{300}\)
Ta có : \(2^{300}=\left(2^6\right)^{50}=64^{50}\)
Vì \(25^{50}< 64^{50}\) nên \(25^{50}< 2^{300}\)
b)\(625^{15}\) và \(12^{45}\)
Ta có : \(12^{45}=\left(12^3\right)^{15}=1728^{15}\)
Vì \(625^{15}< 1728^{15}\) nên \(625^{15}< 12^{45}\)
a) \(x+\left|x-2\right|=7\)
\(\Leftrightarrow\left|x-2\right|=7-x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=7-x\\x-2=-7+x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=9\\0x=-5\left(loại\right)\end{matrix}\right.\) \(\Leftrightarrow x=\dfrac{9}{2}\)
b) \(\left|x-3\right|+\left|x-5\right|=9\left(1\right)\)
Ta thấy :
\(\left|x-3\right|+\left|x-5\right|\ge\left|x-3+x-5\right|=\left|2x-8\right|\)
\(pt\left(1\right)\Leftrightarrow\left|2x-8\right|=9\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-8=9\\2x-8=-9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=17\\2x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{17}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
c) \(\left|x-1\right|+\left|x+1\right|=10\left(1\right)\)
Ta thấy :
\(\left|x-1\right|+\left|x+1\right|\ge\left|x-1+x+1\right|=\left|2x\right|\)
\(pt\left(1\right)\Leftrightarrow\left|2x\right|=10\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=10\\2x=-10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
a) \(x+\left|x-2\right|=7\)
\(\Rightarrow\left\{{}\begin{matrix}x+\left(x-2\right)=7\left(x\ge2\right)\\x-\left(x-2\right)=7\left(x< 2\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+x-2=7\\x-x+2=7\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x-2=7\\2=7\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=9\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow2x=-9\)
\(\Rightarrow x=-\dfrac{9}{2}\)