Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(\frac{x-1}{x-5}=\frac{6}{7}\Leftrightarrow7x-7=6x-30\)
\(\Leftrightarrow x=-23\)
\(\frac{x-2}{x-1}=\frac{x+4}{x+7}\)ĐK : \(x\ne1;-7\)
\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=\left(x+4\right)\left(x-1\right)\)
\(\Leftrightarrow x^2+5x-14=x^2+3x-4\)
\(\Leftrightarrow2x-10=0\Leftrightarrow x=5\)
a) Ta có : ( x + 1 ).( 3 - x ) > 0
Th1 : \(\hept{\begin{cases}x+1>0\\3-x>0\end{cases}\Rightarrow\hept{\begin{cases}x>-1\\x>3\end{cases}\Rightarrow}x>3}\)
Th2 : \(\hept{\begin{cases}x+1< 0\\3-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x< 3\end{cases}\Rightarrow}x< -1}\)
a, \(\left|x^2+2x\right|+\left|\left(x+2\right)\left(x-7\right)\right|=0\)
Dấu ''='' xảy ra khi : \(x^2+2x=0\)và \(\left(x+2\right)\left(x-7\right)=0\)
\(\Leftrightarrow x=0or-2andx=-2;7\)
Vậy \(x\in\left\{0;-2;7\right\}\)
b, tương tự
a) \(\left|1-x\right|+\left|y-\frac{2}{3}\right|+\left|x+z\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}1-x=0\\y-\frac{2}{3}=0\\x+z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1-0=1\\y=0+\frac{2}{3}=\frac{2}{3}\\z=0-1=-1\end{cases}}}\)
Vậy \(x=1,y=\frac{2}{3},z=-1\)
b) \(\left|\frac{1}{4}-x\right|+\left|x+y+z\right|+\left|\frac{2}{3}+y\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{4}-x=0\\x+y+z=0\\\frac{2}{3}+y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}-0=\frac{1}{4}\\x+y+z=0\\y=0+\frac{2}{3}=\frac{2}{3}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{4}\\z=0-\frac{1}{4}-\frac{2}{3}=\frac{-11}{12}\\y=\frac{2}{3}\end{cases}}}\)
Vậy \(x=\frac{1}{4},y=\frac{-11}{12},z=\frac{2}{3}\)
A, \(x\cdot x+2x-3=0\)
\(x^2+2x-3=0\)
\(x^2+3x-x-3=0\)
\(x\left(x+3\right)-\left(x+3\right)=0\)
\(\left(x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow x+3=0\) => x=-3
\(\Leftrightarrow x-1=0\)=> x=1
b,
\(2x^2+3x+1=0\)
\(2x^2+2x+x+1=0\)
\(2x\left(x+1\right)+\left(x+1\right)=0\)
\(\left(x+1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow x+1=0\)=> x=-1
\(\Leftrightarrow\)\(2x+1=0\)=> x=\(\frac{-1}{2}\)
a) \(\left|x\right|-15=6\Rightarrow\left|x\right|=21\Rightarrow\left[{}\begin{matrix}x=21\\x=-21\end{matrix}\right.\)
b) \(\left|x\right|+4=0\Rightarrow\left|x\right|=-4\Rightarrow x\in\varnothing\)
c) \(x^2-16=0\Rightarrow x^2=16=4^2\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
a, /x/-15=6
/x/ =6+15
/x/ =21
x =\(\pm\)21
b, /x/+4=0
/x/ =0-4
/x/ =-4
x =4
c, x^2-16=0
x^2 =0+16
x^2 =16
x^2 = (\(\pm\)4)^2
x =\(\pm\) 4