Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2x\left(x-3\right)+6\left(3-x\right)=0\)
\(\Leftrightarrow2\left[x\left(x-3\right)+3\left(3-x\right)\right]=0\)
\(\Leftrightarrow x\left(x-3\right)+3\left(3-x\right)=0\)
\(\Leftrightarrow x-3=0\)
\(\Rightarrow x=3\)
b) \(3x\left(2x-5\right)-15\left(5-2x\right)=0\)
\(\Leftrightarrow3\left[x\left(2x-5\right)-5\left(5-2x\right)\right]=0\)
\(\Leftrightarrow x\left(2x-5\right)-5\left(5-2x\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(2x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\2x-5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-5\\x=\frac{5}{2}\end{cases}}\)
a, \(\left|x+2\right|-\left|x+7\right|=0\Rightarrow\left|x+2\right|=\left|x+7\right|\Rightarrow\orbr{\begin{cases}x+2=x+7\\x+2=-x-7\end{cases}\Rightarrow\orbr{\begin{cases}0=5\left(loại\right)\\2x=-9\end{cases}\Rightarrow}x=\frac{-9}{2}}\)
b, - Nếu \(2x-1\ge0\Rightarrow x\ge\frac{1}{2}\), ta có: 2x - 1 = 2x - 1 => 2x = 2x (thỏa mãn với mọi x)
- Nếu 2x - 1 < 0 => \(x< \frac{1}{2}\), ta có: 2x - 1 = 1 - 2x => 4x = 2 => x = \(\frac{1}{2}\) (không thỏa mãn điều kiện)
Vậy \(x\ge\frac{1}{2}\)
c,d tương tự b
e, tương tự a
x | -vc | -5 | 2 | 3 | +vc | ||
x-3 | - | - | - | 0 | + | ||
2-x | + | + | 0 | - | - | ||
x+5 | - | + | + | + | + | ||
VT | + | kxd | 0 | 0 | - |
khi x<-5 thi VT<0
nghiem x<-5
Mình biết làm rồi!