Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x-3) + (x-2) + ( x-1) + ..... + 10 + 11 = 11
(x-3) + (x-2) + ( x-1) + ..... + 10 = 0
Gọi số các số hạng từ x-3 đến 10 là n
Ta có : [10 + (x-3)].n : 2 = 0
(x+7).n = 0
Vì n ≠ 0 ( n là số các số hạng )
Nên x+7 = 0
x = 0-7
x = -7
Vậy x = -7
b)
x + ( x + 1 ) + ( x + 2 ) + ... + 2018 + 2019 = 2019
⇒ x + ( x +1 ) + ... + 2018 = 0
⇒ x + ( x + 1 ) + ... + ( x + 2018 ) = 1 + 2 + ... + 2018
⇒ x = 0
vậy x = 0
\(\begin{array}{l} a)\left( {x + 1} \right) + \left( {x + 3} \right) + \left( {x + 5} \right) + ... + \left( {x + 99} \right) = 0\\ \Leftrightarrow 50x + \left( {1 + 3 + 5 + ... + 99} \right) = 0\\ \Leftrightarrow 50x + \left( {99 + 1} \right).25 = 0\\ \Leftrightarrow 50x + 2500 = 0\\ \Leftrightarrow x = - 50 \end{array}\)
\(\begin{array}{l} b)\left( {x - 3} \right) + \left( {x - 2} \right) + \left( {x - 1} \right) + ... + 10 + 11 = 11\\ \Leftrightarrow \left( {x - 3} \right) + \left( {x - 2} \right) + \left( {x - 1} \right) + \left( {1 + 2 + 3 + ... + 10} \right) = 0\\ \Leftrightarrow \left( {x - 3} \right) + \left( {x - 2} \right) + \left( {x - 1} \right) + 55 = 0\\ \Leftrightarrow \left( {x - 3} \right) + \left( {x - 2} \right) + \left( {x - 1} \right) = - 55\\ \Leftrightarrow 3x = - 49\\ \Leftrightarrow x = - \dfrac{{49}}{3} \end{array}\)
a) \(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+..+\left(x+99\right)=0\)
Tổng các số hạng là;
\(\left(99+1\right):2=50\)(số hạng)
\(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+..+\left(x+99\right)=0\)
\(\Leftrightarrow50x+\left(1+3+..+99\right)=0\)
\(\Leftrightarrow50x+\frac{\left(99+1\right).50}{2}=0\)
\(\Leftrightarrow50x+2500=0\)
\(\Leftrightarrow50x=-2500\)
\(\Leftrightarrow x=\frac{-2500}{50}=-50\)
b) \(\left(x-3\right)+\left(x-2\right)+\left(x-1\right)+..+10+11=11\)
\(\left(x-3\right)+\left(x-2\right)+\left(x-1\right)+..+10=0\)
gọi các số hạng từ ( x-3) đến 10 là n
Ta có; \(\left[10+\left(x-3\right)\right].n:2=0\)
\(\Rightarrow\left(x+7\right).n=0\)
Vì \(n\ne0\)
Nên \(x+7=0\)
\(\Rightarrow x=-7\)
1)a Ta có: \(A=\left|x+19\right|+\left|y-5\right|+1890\)
\(\hept{\begin{cases}\left|x+19\right|\ge0\\\left|y-5\right|\ge0\end{cases}\Rightarrow\left|x+19\right|+\left|y-5\right|+1890\ge1890}\)
Vậy giá trị A nhỏ nhất = 1890 <=> x=-19; y= 5
2) a. \(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=2019\)
\(\left(1+3+5+...+99\right)+\left(x+x+x+...+x\right)=2019\)
Rồi bn tính tổng của dãy số cách đều nha. Công thức: (Số cuối+ Số đầu). Số số hạng: 2
3) Ta có: \(A^2=b\left(a-c\right)-c\left(a-b\right)\)
\(A^2=ab-bc-ac+bc\)
\(A^2=\left(-bc+bc\right)+\left(ab-ac\right)\)
\(A^2=0+a\left(b-c\right)\)
\(A^2=-20.\left(-5\right)=100\)
\(\Rightarrow A=10\)
Chúc bạn năm mới vui vẻ nha! Happy new year !
(x+1)+(x+3)+...+(x+99)=0
Tổng các số hạng là: (99+1):2=50 (số hạng)
=> (x+1)+(x+3)+...+(x+99)=0 <=> 50.x+(1+3+5+...+99) = 0
<=> 50.x+=0 <=> 50.x+2500=0 => x=-2500/50=-50
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(A=1-\frac{1}{2020}\)
\(A=\frac{2019}{2020}\)
\(B=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)
\(2B=\frac{2}{1.3}+\frac{2}{3.5}=\frac{2}{5.7}+...+\frac{2}{2017.2019}\)
\(2B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}=\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(2B=1-\frac{1}{2019}\)
\(2B=\frac{2018}{2019}\)
\(B=\frac{2018}{2019}:2=\frac{1009}{2019}\)
a) (x+3)(x+5)=0
=>x+3=0 hoặc x+5=0
=>x=-3 hoặc -5
b) (x-1).5-1=0
=>5x-5-1=0
=>5x-6=0
=>5x=6
=>x=6/5
c)
Tìm x :
a) (x - 3) + (x - 2) + (x - 1) + .... + 10 + 11 = 11
(x - 3) + (x - 2) + (x - 1) + .... + 10 = 0
[(x - 3) + (x - 2) + (x - 1)] + (0 + 1 + 2 + ... + 10) = 0
[(x - 3) + (x - 2) + (x - 1)] + 55 = 0
x - 3 + x - 2 + x - 1 = -55
x + x + x - (3 + 2 + 1) = -55
x3 - 6 = -55
x3 = -55 + 6
x3 = -49
x = -49 : 3
x = -\(\frac{49}{3}\)
Cảm ơn bạn