Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)ĐK : \(x\ne\pm2\)
\(=\left(\frac{x-2\left(x+2\right)+x-2}{\left(x-2\right)\left(x+2\right)}\right):\left(\frac{\left(x-2\right)\left(x+2\right)+10-x^2}{x+2}\right)\)
\(=\frac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}:\frac{x^2-4+10-x^2}{x+2}=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}=\frac{-1}{x-2}\)
b, Ta có : \(2\left|x\right|=1\Leftrightarrow\left|x\right|=\frac{1}{2}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)
TH1 : Thay x = 1/2 vào biểu thức A ta được : \(-\frac{1}{\frac{1}{2}+2}=-\frac{1}{\frac{5}{2}}=-\frac{2}{5}\)
TH2 : Thay x = -1/2 vào biểu thức A ta được : \(\frac{-1}{-\frac{1}{2}-2}=-\frac{1}{-\frac{5}{2}}=-1.\left(-\frac{2}{5}\right)=\frac{2}{5}\)
c, Ta có A < 0 hay \(\frac{-1}{x-2}< 0\Rightarrow x-2>0\)do - 1 < 0
\(\Leftrightarrow x>2\)
d, Ta có A = x hay \(\frac{-1}{x-2}=x\Rightarrow x^2-2x=-1\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)
a, Ta có :
(x-2)^2 - (x-3)(x+3) = 6
=> (x-2)^2 - (x-3)^2 = 6 .
=> [(x-2) - (x-3)]^2 = 6 .
=> [ x - 2 - x + 3 ]^2 = 6 .
=> 0x + 1^2 = 6 .
=> 0x + 1 = 6 .
=> 0x = 5 .
=> Vô lí .
=> Không cos giá trị của x .
\(\text{a , (x-3).(x^2+3x+9)+x(x+2).(2-x)=1 }\)
=(x3-33)+x(4-x2)=1
=x3-27+4x-x3=1
4x-27=1
4x=28
x=7
\(\text{b, (x+1)^3-(x-1)^3-6.(x-1)^2=-10}\)
=-0,5
a) \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)
\(\Leftrightarrow x^3-3^3+x\left(4-x^2\right)=1\)
\(\Leftrightarrow x^3-27+4x-x^3=1\)
\(\Leftrightarrow-27+4x=1\)
\(\Leftrightarrow4x=1+27\)
\(\Leftrightarrow4x=28\)
\(\Leftrightarrow x=28:4\)
\(\Leftrightarrow x=7\)
Vậy phương trình có 1 nghiệm duy nhất là 7
b) \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\)
Biến đổi vế trái của phương trình
\(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=4\left(3x-1\right)\)
Phương trình thu được sau khi biến đổi
\(4\left(3x-1\right)=-2.5\)
\(\Leftrightarrow12x-4=-10\)
\(\Leftrightarrow12x=-6\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy nghiệm duy nhất của phương trình là \(\frac{-1}{2}\)
\(A=x^2-6x+10\)
\(=x^2-6x+9+1\)
\(=\left(x-3\right)^2+1\)
\(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+1\ge1>0\)
Vậy A > 0 với mọi x.
\(B=x^2-2xy+y^2+1\)
\(=\left(x-y\right)^2+1\)
\(\left(x-y\right)^2\ge0\)
\(\Rightarrow\left(x-y\right)^2+1\ge1>0\)
Vậy B > 0 với mọi x, y.
\(M=x^2-6x+12\)
\(=x^2-6x+9+3\)
\(=\left(x-3\right)^2+3\)
\(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+3\ge3\)
\(MinB=3\Leftrightarrow x=3\)
\(\left(x+3\right)^2+\left(x-2\right)\left(x+2\right)-2\left(x-1\right)^2=7\)
\(x^2+6x+9+x^2-4-2\left(x^2-2x+1\right)=7\)
\(2x^2+6x+5-2x^2+4x-2=7\)
\(10x=7+3\)
\(10x=10\)
\(x=1\)
\(x^2+x=0\)
\(x\left(x+1\right)=0\)
\(\left[\begin{array}{nghiempt}x=0\\x+1=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=0\\x=-1\end{array}\right.\)
\(x^3-\frac{1}{4}x=0\)
\(x\left(x^2-\frac{1}{4}\right)=0\)
\(x\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)=0\)
\(\left[\begin{array}{nghiempt}x=0\\x-\frac{1}{2}=0\\x+\frac{1}{2}=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=0\\x=\frac{1}{2}\\x=-\frac{1}{2}\end{array}\right.\)
\(\left(x+10\right)^2-\left(x^2+2x\right)\)
\(=x^2+20x+100-x^2-2x\)
\(=18x+100\)
\(\left(x+2\right)\left(x-2\right)+\left(x-1\right)\left(x^2+x+1\right)-x\left(x^2+x\right)\)
\(=x^2-4+x^3-1-x^3-x^2\)
\(=-5\)
a ) \(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)
\(\Leftrightarrow x^2-4x+4-x^2+9=6\)
\(\Leftrightarrow-4x+13=6\)
\(\Leftrightarrow-4x=-7\)
\(\Leftrightarrow x=\frac{7}{4}\)
Vậy \(x=1\).
b ) \(4\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10\)
\(\Leftrightarrow4\left(x^2-6x+9\right)-\left(4x^2-1\right)=10\)
\(\Leftrightarrow4x^2-24x+36-4x^2+1=10\)
\(\Leftrightarrow-24x+37=10\)
\(\Leftrightarrow-24x=27\)
\(\Leftrightarrow x=\frac{9}{8}.\)
Mấy pài kia tương tự . :D
a) (x+3)² + (4+x)(4-x) = 10
x² + 6x + 9 + 16- x² = 10
6x + 25 = 10
6x = -15
x = -15/6
b) 9(x+1)² - (3x-2)(3x+2) = 10
9x² + 18x + 9 - 9x² + 4 =10
18x + 13 = 10
18x = -3
x = -1/6
a) ( x + 3 )2 + ( 4 + x )( 4 - x ) = 10
⇔ x2 + 6x + 9 + 16 - x2 = 10
⇔ 6x + 25 = 10
⇔ 6x = -15
⇔ x = -15/6 = -5/2
b) 9( x + 1 )2 - ( 3x - 2 )( 3x + 2 ) = 10
⇔ 9( x2 + 2x + 1 ) - ( 9x2 - 4 ) = 10
⇔ 9x2 + 18x + 9 - 9x2 + 4 = 10
⇔ 18x + 13 = 10
⇔ 18x = -3
⇔ x = -3/18 = -1/6
(x + 2)(x - 1) = 10
=> x2 + x - 2 = 10
=> \(\left(x^2+\frac{1}{2}x\right)+\left(\frac{1}{2}x+\frac{1}{4}\right)-\frac{9}{4}=10\)
=> \(\left(x+\frac{1}{2}\right)^2=\frac{49}{4}\)
=> \(\left(x+\frac{1}{2}\right)^2=\left(\frac{7}{2}\right)^2\)
=> \(\orbr{\begin{cases}x+\frac{1}{2}=\frac{7}{2}\\x+\frac{1}{2}=-\frac{7}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-4\end{cases}}\)
( x + 2 )( x - 1 ) = 10
<=> x2 + x - 2 = 10
<=> x2 + x - 2 - 10 = 0
<=> x2 + x - 12 = 0
<=> x2 + 4x - 3x - 12 = 0
<=> ( x2 + 4x ) - ( 3x + 12 ) = 0
<=> x( x + 4 ) - 3( x + 4 ) = 0
<=> ( x - 3 )( x + 4 ) = 0
<=> x - 3 = 0 hoặc x + 4 = 0
<=> x = 3 hoặc x = -4
Vậy S = { 3 ; -4 }