Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\) \((\)\(\dfrac{3}{2.5}\) \(+
\) \(\dfrac{3}{5.8}\) \(+\) \(\dfrac{3}{8.11}\) \(+\) \(\dfrac{3}{11.14}\)\()\) \(=\) \(\dfrac{1}{21}\)
\(x\) \((\)\(\dfrac{1}{2}\) \(-\) \(\dfrac{1}{5}\) \(+\) \(\dfrac{1}{5}\) \(-\) \(\dfrac{1}{8}\) \(+\) \(\dfrac{1}{8}\) \(-\) \(\dfrac{1}{11}\) \(+\) \(\dfrac{1}{11}\) \(-\) \(\dfrac{1}{14}\)\()\) \(=\) \(\dfrac{1}{21}\)
\(x\) \((\)\(\dfrac{1}{2}\) \(-\) \(\dfrac{1}{14}\)\()\) \(=\) \(\dfrac{1}{21}\)
\(x\) x \(\dfrac{3}{7}\) \(=\) \(\dfrac{1}{21}\)
\(x\) \(=\) \(\dfrac{1}{21}\) \(:\) \(\dfrac{3}{7}\)
\(x\) \(=\) \(\dfrac{1}{9}\)
\(\dfrac{3x}{2.5}+\dfrac{3x}{5.8}+\dfrac{3x}{8.11}+\dfrac{3x}{11.14}=\dfrac{1}{21}\)
\(\Rightarrow x\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}\right)=\dfrac{1}{21}\)
\(\Rightarrow x\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}\right)=\dfrac{1}{21}\)
\(\Rightarrow x\left(\dfrac{1}{2}-\dfrac{1}{14}\right)=\dfrac{1}{21}\)
\(\Rightarrow x.\dfrac{3}{7}=\dfrac{1}{21}\)
\(\Rightarrow x=\dfrac{1}{21}.\dfrac{7}{3}\)
\(\Rightarrow x=\dfrac{1}{9}\)
Vậy \(x=\dfrac{1}{9}\)
3x/2.5 + 3x/5.8+3x/8.11+3x/11.14 = 1/21
x(1/2-1/5+1/5-1/8+1/8-1/11+1/11-1/14) = 1/21
x(1/2-1/14) = 1/21
x . 3/7 = 1/21
=> x = 1/21 : 3/7
=> x = 1/9
Hihi mình giải zầy mk hk bik đúng hay sai
\(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+\dfrac{3}{14\cdot17}\)
= \(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}\)
\(=\dfrac{1}{2}-\dfrac{1}{17}\)
\(=\dfrac{15}{34}\)
Vì \(\dfrac{15}{34}< \dfrac{1}{2}=>\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+\dfrac{3}{14\cdot27}< \dfrac{1}{2}\)
Ta có : \(\frac{3x}{2\times5}+\frac{3x}{5\times8}+\frac{3x}{8\times11}+\frac{3x}{11\times14}=\frac{1}{21}\)
\(\Rightarrow x\times\left(\frac{3}{2\times5}+\frac{3}{5\times8}+\frac{3}{8\times11}+\frac{3}{11\times14}\right)=\frac{1}{21}\)
\(\Rightarrow x\times\left(\frac{1}{2\times5}+\frac{1}{5\times8}+\frac{1}{8\times11}+\frac{1}{11\times14}\right)=\frac{1}{21}\)
\(x\times\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\right)=\frac{1}{21}\)
\(x\times\left(\frac{1}{2}-\frac{1}{14}\right)\) \(=\frac{1}{21}\)
\(x\times\frac{3}{7}\) \(=\frac{1}{21}\)
\(x\) \(=\frac{1}{21}\div\frac{3}{7}=\frac{1}{21}\times\frac{7}{3}\)
\(\Rightarrow x=\frac{1}{9}\)
Ta có 3x/2.5+3x/5.8+3x/8.11+3x/11.14=1/21
=>x(3/2.5+3/5.8+3/8.11+3/11.14)=1/21
=>3x(1/2.5+1/5.8+1/8.11+1/11.14)=1/21
=>3x(1/2-1/14)=1/21
=>3x.3/7=1/21
=>3x=1/21:3/7
=>3x=1
=>x=1:3=1/3
a) \(\dfrac{-x}{4}=\dfrac{-9}{x}\)
\(\Rightarrow-x^2=-36\)
\(\Rightarrow x^2=36\)
\(\Rightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
Vậy: \(x\in\left\{6;-6\right\}\)
b) \(\dfrac{5}{9}+\dfrac{x}{-1}=-\dfrac{1}{3}\)
\(\Rightarrow\dfrac{5}{9}+\dfrac{-9x}{9}=\dfrac{-3}{9}\)
\(\Rightarrow5-9x=-3\)
\(\Rightarrow-9x=-8\)
\(\Rightarrow x=\dfrac{8}{9}\)
Vậy: \(x=\dfrac{8}{9}\)
c) \(x:3\dfrac{1}{5}=1\dfrac{1}{2}\)
\(\Rightarrow x:\dfrac{16}{5}=\dfrac{3}{2}\)
\(\Rightarrow x=\dfrac{3}{2}.\dfrac{16}{5}\)
\(\Rightarrow x=\dfrac{24}{5}\)
Vậy: \(x=\dfrac{24}{5}\)
d) \(\dfrac{3x-1}{-5}=\dfrac{-5}{3x-1}\)
\(\Rightarrow\left(3x-1\right)^2=25\)
\(\Rightarrow\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=6\\3x=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{2;-\dfrac{4}{3}\right\}\)
\(\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+\dfrac{1}{11\cdot14}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)
\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+...+\dfrac{3}{x\left(x+3\right)}\right)=\dfrac{101}{1540}\)
\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{101}{1540}\)
\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{x+3}\right)=\dfrac{101}{1540}\)\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\Leftrightarrow\dfrac{1}{x+3}=\dfrac{1}{308}\)\(\Rightarrow x+3=308\Rightarrow x=305\)
a)
<=> (1/3)[3/(5.8) + 3/(8.11) + ... + 3/[x(x+3)] = 101/1540
<=> (1/3)[(1/5 - 1/8) + (1/8 - 1/11) + ... + 1/x - 1/(x+3)] = 101/1540
<=> (1/3)[1/5 - 1/(x+3)] = 101/1540
<=> 1/5 - 1/(x+3) = 303/1540
<=> 1/(x+3) = 1/5 - 303/1540 = 5/1540 = 1/308
<=> x = 305
b)
a)\(\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x.\left(x+3\right)}=\dfrac{101}{1540}\)
\(\dfrac{1.3}{5.8}+\dfrac{1.3}{8.11}+\dfrac{1.3}{11.14}+...+\dfrac{1.3}{x.\left(x+3\right)}=\dfrac{101.3}{1540}\)
\(\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{x.\left(x+3\right)}=\dfrac{303}{1540}\)
\(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\dfrac{1}{x+3}=\dfrac{1}{5}-\dfrac{303}{1540}\)
\(\dfrac{1}{x+3}=\dfrac{1}{308}\)
308.1 = (x + 3).1
308 = x + 3
x = 308 - 3
x = 305
a, dễ, tự làm
b, \(\dfrac{3x}{2.5}+\dfrac{3x}{5.8}+.........+\dfrac{3x}{11.14}=\dfrac{1}{21}\)
\(\Leftrightarrow x\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+.........+\dfrac{3}{11.14}\right)=\dfrac{1}{21}\)
\(\Leftrightarrow x\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+.....+\dfrac{1}{11}-\dfrac{1}{14}\right)=\dfrac{1}{21}\)
\(\Leftrightarrow x\left(\dfrac{1}{2}-\dfrac{1}{14}\right)=\dfrac{1}{21}\)
\(\Leftrightarrow x.\dfrac{3}{7}=\dfrac{1}{21}\)
\(\Leftrightarrow x=\dfrac{1}{9}\)
Vậy ...
a) (x-2)3 = (x-2)2
<=> (x-2)3-(x-2)2 = 0
<=> (x-2)2(x-2-1) = 0
<=> \(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\x-3=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
b) \(\dfrac{3x}{2.5}+\dfrac{3x}{5.8}+...+\dfrac{3x}{11.14}=\dfrac{1}{21}\)
<=> \(x\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+...+\dfrac{3}{11.14}\right)=\dfrac{1}{21}\)
<=> \(x\left(\dfrac{1}{2}-\dfrac{1}{14}\right)=\dfrac{1}{21}\)
<=> \(x=\dfrac{1}{21}:\dfrac{3}{7}\)
<=> \(x=\dfrac{1}{9}\)