\(\frac{5}{1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2019

a, 4x2 - 9 = 0 => (2x)2 = 9 => 2x = 3 hoặc 2x = -3 => x = 3/2 hoặc x = -3/2

b, 2x2 + 0,36 = 1 => 2x2 = 0,64 => x2 = 0,32 = 8/25 => \(\orbr{\begin{cases}x=\sqrt{\frac{8}{25}}\\x=-\sqrt{\frac{8}{25}}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{2\sqrt{2}}{5}\\x=\frac{-2\sqrt{2}}{5}\end{cases}}\)

c, \(\frac{5}{12}.\sqrt{x}-\frac{1}{6}=\frac{1}{3}\)

\(\Rightarrow\frac{5}{12}.\sqrt{x}=\frac{1}{3}+\frac{1}{6}=\frac{1}{2}\)

\(\Rightarrow\sqrt{x}=\frac{1}{2}\div\frac{5}{12}\)

\(\Rightarrow\sqrt{x}=\frac{6}{5}\)

\(\Rightarrow x=\left(\frac{6}{5}\right)^2=\frac{36}{25}\)

d, 3x2 + 7 = -4 => 3x2 = -4 - 7 => 3x2 = -11 => x2 = -11/3 (vô lý) => x ∈ Ø

22 tháng 9 2016

oho nhiều quá trời, lm chắc mỏi tay luôn

23 tháng 9 2016

\(\left(\frac{1}{2}\right)^5\times x=\left(\frac{1}{2}\right)^7\) 

              \(x=\left(\frac{1}{2}\right)^7\div\left(\frac{1}{2}\right)^5\)

             \(x=\left(\frac{1}{2}\right)^{7-5}=\left(\frac{1}{2}\right)^2=\frac{1}{4}\) .

\(\left(\frac{3}{7}\right)^2\times x=\left(\frac{9}{21}\right)^2\) 

 \(\left(\frac{3}{7}\right)^2\times x=\left(\frac{3}{7}\right)^4\)            

              \(x=\left(\frac{3}{7}\right)^4\div\left(\frac{3}{7}\right)^2\)

              \(x=\left(\frac{3}{7}\right)^{4-2}=\left(\frac{3}{7}\right)^2=\frac{9}{49}\)

\(2^x=2\Rightarrow x=1\)

\(3^x=3^4\Rightarrow x=4\)

\(7^x=7^7\Rightarrow x=7\)

\(\left(-3\right)^x=\left(-3\right)^5\Rightarrow x=5\)

\(\left(-5\right)^x=\left(-5\right)^4\Rightarrow x=4\)

\(2^x=4\Leftrightarrow2^x=2^2\Rightarrow x=2\)

\(2^x=8\Leftrightarrow2^x=2^3\Rightarrow x=3\)

\(2^x=16\Leftrightarrow2^x=2^4\Rightarrow x=4\)

\(3^{x+1}=3^2\Leftrightarrow x+1=2\Leftrightarrow x=2-1\Rightarrow x=1\)

\(5^{x-1}=5\Leftrightarrow x-1=1\Leftrightarrow x=1+1\Rightarrow x=2\)

\(6^{x+4}=6^{10}\Leftrightarrow x+4=10\Leftrightarrow x=10-4\Rightarrow x=6\)

\(5^{2x-7}=5^{11}\Leftrightarrow2x-7=11\Leftrightarrow2x=11+7\Leftrightarrow2x=18\Leftrightarrow x=18\div2\Rightarrow x=9\)

\(\left(-2\right)^{4x+2}=64\)

\(2^{-4x+2}=2^6\Leftrightarrow-4x+2=6\Leftrightarrow-4x=6-2\Leftrightarrow-4x=4\Leftrightarrow x=4\div\left(-4\right)\Rightarrow x=-1\)

\(\left(\frac{1}{2}\right)^x=\left(\frac{1}{2}\right)^5\Rightarrow x=5\)

\(\left(\frac{5}{6}\right)^{2x}=\left(\frac{5}{6}\right)^5\Rightarrow2x=5\Rightarrow x=\frac{5}{2}\)

\(\left(\frac{3}{4}\right)^{2x-1}=\left(\frac{3}{4}\right)^{5x-4}\Rightarrow2x-1=5x-4\)

                                      \(2x-5x=-4+1\) 

                                           \(-3x=-3\Rightarrow x=1\)

\(\left(\frac{-1}{10}\right)^x=\frac{1}{100}\)

 \(\left(\frac{1}{10}\right)^{-x}=\left(\frac{1}{10}\right)^2\Rightarrow-x=2\Rightarrow x=-2\)

\(\left(\frac{-3}{2}\right)^x=\frac{9}{4}\)

\(\left(\frac{3}{2}\right)^{-x}=\left(\frac{3}{2}\right)^2\Rightarrow-x=2\Rightarrow x=-2\)

\(\left(\frac{-3}{5}\right)^{2x}=\frac{9}{25}\)

 \(\left(\frac{3}{5}\right)^{-2x}=\left(\frac{3}{5}\right)^2\Rightarrow-2x=2\Rightarrow x=-1\)

\(\left(\frac{-2}{3}\right)^x=\frac{-8}{27}\)

\(\left(\frac{-2}{3}\right)^x=\left(\frac{-2}{3}\right)^3\Rightarrow x=3\).

hehe.heheoho đánh tới què tay, hoa mắt lun r nekkk!!hum

2 tháng 4 2019

Câu 1: Tìm nghiệm của các đa thức:

1. P(x) = 2x -3

⇒2x-3=0

↔2x=3

↔x=\(\frac{3}{2}\)

2. Q(x) = −12−12x + 5

↔-12-12x+5=0

↔-12x=0+12-5

↔-12x=7

↔x=\(\frac{7}{-12}\)

3. R(x) = 2323x + 1515

↔2323x+1515=0

↔2323x=-1515

↔x=\(\frac{-1515}{2323}\)

4. A(x) = 1313x + 1

1313x + 1=0

↔1313x=-1

↔x=\(\frac{-1}{1313}\)

5. B(x) = −34−34x + 1313

−34−34x + 1313=0

↔-34x=0+34-1313

↔-34x=-1279

↔x=\(\frac{1279}{34}\)

Câu 2: Chứng minh rằng: đa thức x2 - 6x + 8 có hai nghiệm số là 2 và 4

Giải :cho x2 - 6x + 8 là f(x)

có:f(2)=22 - 6.2 + 8

=4-12+8

=0⇒x=2 là nghiệm của f(x)

có:f(4)=42 - 6.4 + 8

=16-24+8

=0⇒x=4 là nghiệm của f(x)

Câu 3: Tìm nghiệm của các đa thức sau:

1.⇒ (2x - 4) (x + 1)=0

↔2x-4=0⇒2x=4⇒x=2

x+1=0⇒x=-1

-kết luận:x=2 vàx=-1 là nghiệm của A(x)

2. ⇒(-5x + 2) (x-7)=0

↔-5x + 2=0⇒-5x=-2⇒

x-7=0⇒x=7

-kết luận:x=\(\frac{2}{5}\)và x=7 là nghiệm của B(x)

3.⇒ (4x - 1) (2x + 3)=0

⇒4x-1=0↔4x=1⇒x=\(\frac{1}{4}\)

2x+3=0↔2x=3⇒x=\(\frac{3}{2}\)

-kết luận:x=\(\frac{1}{4}\)và x=\(\frac{3}{2}\) là nghiệm của C(x)

4. ⇒ x2- 5x=0

↔x.x-5.x=0

↔x.(x-5)=0

↔x=0

x-5=0⇒x=5

-kết luận:x=0 và x=5 là nghiệm của D(x)

5. ⇒-4x2 + 8x=0

↔-4.x.x+8.x=0

⇒x.(-4x+x)=0

⇒x=0

-4x+x=0⇒-3x=0⇒x=0

-kết luận:x=0 là nghiệm của E(x)

Câu 4: Tính giá trị của:

1. f(x) = -3x4 + 5x3 + 2x2 - 7x + 7 tại x = 1; 0; 2

-X=1⇒f(x) =4

-X=0⇒f(x) =7

-X=2⇒f(x) =89

2. g(x) = x4 - 5x3 + 7x2 + 15x + 2 tại x = -1; 0; 1; 2

-X=-1⇒G(x) =-14

-X=0⇒G(x) =2

-X=1⇒G(x) =20

-X=2⇒G(x) =43

AH
Akai Haruma
Giáo viên
7 tháng 8 2019

a)

\((3x-7)^5=0\Rightarrow 3x-7=0\Rightarrow x=\frac{7}{3}\)

b)

\(\frac{1}{4}-(2x-1)^2=0\)

\(\Leftrightarrow (2x-1)^2=\frac{1}{4}=(\frac{1}{2})^2=(-\frac{1}{2})^2\)

\(\Rightarrow \left[\begin{matrix} 2x-1=\frac{1}{2}\\ 2x-1=\frac{-1}{2}\end{matrix}\right.\Rightarrow \Rightarrow \left[\begin{matrix} x=\frac{3}{4}\\ x=\frac{1}{4}\end{matrix}\right.\)

c)

\(\frac{1}{16}-(5-x)^3=\frac{31}{64}\)

\(\Leftrightarrow (5-x)^3=\frac{1}{16}-\frac{31}{64}=\frac{-27}{64}=(\frac{-3}{4})^3\)

\(\Leftrightarrow 5-x=\frac{-3}{4}\)

\(\Leftrightarrow x=\frac{23}{4}\)

d)

\(2x=(3,8)^3:(-3,8)^2=(3,8)^3:(3,8)^2=3,8\)

\(\Rightarrow x=3,8:2=1,9\)

AH
Akai Haruma
Giáo viên
7 tháng 8 2019

e)

\((\frac{27}{64})^9.x=(\frac{-3}{4})^{32}\)

\(\Leftrightarrow [(\frac{3}{4})^3]^9.x=(\frac{3}{4})^{32}\)

\(\Leftrightarrow (\frac{3}{4})^{27}.x=(\frac{3}{4})^{32}\)

\(\Leftrightarrow x=(\frac{3}{4})^{32}:(\frac{3}{4})^{27}=(\frac{3}{4})^5\)

f)

\(5^{(x+5)(x^2-4)}=1\)

\(\Leftrightarrow (x+5)(x^2-4)=0\)

\(\Leftrightarrow \left[\begin{matrix} x+5=0\\ x^2-4=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x+5=0\\ x^2=4=2^2=(-2)^2\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=-5\\ x=\pm 2\end{matrix}\right.\)

g)

\((x-2,5)^2=\frac{4}{9}=(\frac{2}{3})^2=(\frac{-2}{3})^2\)

\(\Rightarrow \left[\begin{matrix} x-2,5=\frac{2}{3}\\ x-2,5=\frac{-2}{3}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{19}{6}\\ x=\frac{11}{6}\end{matrix}\right.\)

h)

\((2x+\frac{1}{3})^3=\frac{8}{27}=(\frac{2}{3})^3\)

\(\Rightarrow 2x+\frac{1}{3}=\frac{2}{3}\Rightarrow x=\frac{1}{6}\)

28 tháng 9 2018

nhé

a)(2x-1)6=(2x-1)8

=> (2x-1)8-(2x-1)6=0

=> (2x-1)6.((2x-1)2-1)=0  

+)th1(2x-1)6=0

+)th2((2x-1)2-1)=0

28 tháng 9 2018

a) \(\left(2x-1\right)^6=\left(2x-1\right)^8\)

\(\Rightarrow\left(2x-1\right)\in\left\{\pm1;0\right\}\)

TH1 : \(2x-1=0\)                       TH2 : \(2x-1=-1\)                      TH3 : \(2x-1=1\)

                   \(2x=1\)                                          \(2x=0\)                                               \(2x=2\)

                      \(x=\frac{1}{2}\)                                          \(x=0\)                                                  \(x=1\)

Vậy \(x\in\left\{\frac{1}{2};0;1\right\}\)

b) Tương tự

23 tháng 7 2019

1, \(a,\left(x+1\right)^2=3\)

\(\Rightarrow x+1=\pm\sqrt{3}\)

\(\Rightarrow x=\pm\sqrt{3}-1\)

\(b,\left(x-1\right)^{x+2}=\left(x-1\right)^{x+6}\)

\(\Rightarrow\left(x-1\right)^{x+6}-\left(x-1\right)^{x+2}=0\)

\(\Rightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^4-1\right]=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^4-1=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^4=1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x-1=\pm1\Rightarrow x=2or\text{ }x=0\end{cases}}\)

\(c,\left(x+\frac{1}{2}\right)^2=\frac{4}{25}\)

\(\Rightarrow x+\frac{1}{2}=\pm\sqrt{\frac{4}{25}}\)

\(\Rightarrow x+\frac{1}{2}=\pm\frac{2}{5}\)

\(\Rightarrow\orbr{\begin{cases}x+\frac{1}{2}=\frac{2}{5}\\x+\frac{1}{2}=-\frac{2}{5}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{10}\\x=-\frac{9}{10}\end{cases}}\)

2, \(a,\sqrt{x}=4\)

\(\Rightarrow\sqrt{x}=\sqrt{16}\)

\(\Rightarrow x=16\)

\(b,\sqrt{x+1}=5\)

\(\Rightarrow\sqrt{x+1}=\sqrt{25}\)

\(\Rightarrow x+1=25\)

\(\Rightarrow x=24\)

\(\Rightarrow5^{\left(x+2\right)\left(x+3\right)}=1\)

\(\Rightarrow5^{\left(x+2\right)\left(x+3\right)}=5^0\)

\(\Rightarrow\left(x+2\right)\left(x+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+2=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}}\)

\(d,\left(2x-1\right)^{12}=\left(x+1\right)^{12}\)

\(\Rightarrow\left(2x-1\right)^{12}\div\left(x+1\right)^{12}=1\)

\(\Rightarrow\) 

2 tháng 10 2020

a) ( x - 1/5 )2 = 0

<=> x - 1/5 = 0

<=> x = 1/5

b) ( x - 2 )2 = 1

<=> ( x - 2 )2 = ( ±1 )2

<=> x - 2 = 1 hoặc x - 2 = -1

<=> x = 3 hoặc x = 1

c) ( 2x - 1 )3 = -8

<=> ( 2x - 1 )3 = (-2)3

<=> 2x - 1 = -2

<=> 2x = -1

<=> x = -1/2

d) ( x4 )2 = x12/x5

<=> x8 = x7

<=> x8 - x7 = 0

<=> x7( x - 1 ) = 0

<=> x7 = 0 hoặc x - 1 = 0

<=> x = 0 hoặc x = 1

e) x10 = 25x8

<=> x10 - 25x8 = 0

<=> x8( x2 - 25 ) = 0

<=> x8 = 0 hoặc x2 - 25 = 0

<=> x = 0 hoặc x = ±5

f) ( 2x + 3 )2 = 9/121

<=> ( 2x + 3 )2 = ( ±3/11 )2

<=> 2x + 3 = 3/11 hoặc 2x + 3 = -3/11

<=> x = -15/11 hoặc x = -18/11

2 tháng 10 2020

a) \(\left(x-\frac{1}{5}\right)^2=0\Leftrightarrow x-\frac{1}{5}=0\Leftrightarrow x=\frac{1}{5}\)

b) \(\left(x-2\right)^2=1\)

\(\Leftrightarrow\left(x-2\right)^2-1=0\)

\(\Leftrightarrow\left(x-2-1\right)\left(x-2+1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

c) \(\left(2x-1\right)^3=-8\)

\(\Leftrightarrow\left(2x-1\right)^3+8=0\)

\(\Leftrightarrow\left(2x-1+8\right)\left[\left(2x-1\right)^2-8\left(2x-1\right)+64\right]=0\)

\(\Leftrightarrow2x+7=0\)

\(\Leftrightarrow x=\frac{-7}{2}\)

d) ĐKXĐ : \(x\ne0\)

 \(\left(x^4\right)^2=\frac{x^{12}}{x^5}\)

\(\Leftrightarrow x^8=x^7\)

\(\Leftrightarrow x^8-x^7=0\)

\(\Leftrightarrow x^7\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=1\left(tm\right)\end{cases}\Leftrightarrow x=1}\)

e) ĐKXĐ : x khác 0 

 \(x^{10}=25x^8\)

\(\Leftrightarrow x^2=25\Leftrightarrow x=5\)

f) \(\left(2x+3\right)^2=\frac{9}{121}\)

\(\Leftrightarrow\left(2x+3+\frac{3}{11}\right)\left(2x+3-\frac{3}{11}\right)=0\)

\(\Leftrightarrow\left(2x+\frac{36}{11}\right)\left(2x+\frac{30}{11}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-18}{11}\\x=-\frac{15}{11}\end{cases}}\)

6 tháng 3 2020

1. A = 75(42004 + 42003 +...+ 4+ 4 + 1) + 25

    A = 25 . [3 . (42004 + 42003 +...+ 4+ 4 + 1) + 1]

    A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 4+ 3 . 4 + 3 + 1)

    A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 4+ 3 . 4 + 4)

    A = 25 . 4 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1)

    A =100 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1) \(⋮\) 100

6 tháng 3 2020

3a) |x| = 1/2 

=> x = 1/2 hoặc x = -1/2

với x = 1/2:

A = \(3.\left(\frac{1}{2}\right)^2-2.\frac{1}{2}+1\)

\(A=\frac{3}{4}-1+1=\frac{3}{4}\)

với x = -1/2

A = \(3.\left(-\frac{1}{2}\right)^2-2\left(-\frac{1}{2}\right)+1\)

\(A=\frac{3}{4}+1+1=\frac{3}{4}+2=\frac{11}{4}\)

GIÚP MÌNH VS!! MÌNH CẦN GẤP!!!! Câu 1: Biểu thức nào sau đây là đơn thức, chọn câu trả lời đúng: 1. A. (5-x)x2 B. -3xy C. 4x+3y2 D. 5y2-z 2. A. \(\frac{-5}{9}\)x2y B. \(\frac{x}{y}\) C. x+\(\frac{1}{y}\) D. (x+y)z2 3. A. 5-x B. \(\frac{1}{x}-\frac{5}{y}\) C. \(\frac{2}{xy}\) D. -5 4. A. \(\frac{2}{5}\)+x2y B. 9x2(y+z) C. 92yz D....
Đọc tiếp

GIÚP MÌNH VS!! MÌNH CẦN GẤP!!!!

Câu 1: Biểu thức nào sau đây là đơn thức, chọn câu trả lời đúng:

1. A. (5-x)x2 B. -3xy C. 4x+3y2 D. 5y2-z

2. A. \(\frac{-5}{9}\)x2y B. \(\frac{x}{y}\) C. x+\(\frac{1}{y}\) D. (x+y)z2

3. A. 5-x B. \(\frac{1}{x}-\frac{5}{y}\) C. \(\frac{2}{xy}\) D. -5

4. A. \(\frac{2}{5}\)+x2y B. 9x2(y+z) C. 92yz D. 1-\(\frac{5}{9}\)x3

Câu 2: Biểu thức nào không phải là đơn thức, chọn câu trả lời đúng:

1. A.\(\frac{7}{2}\) B. 2xy3 C. 7+2x2y D. -3

2. A. 2+5xy2 B. \(\frac{3}{4}\)x2y5 C. 3x2y D. (x+2y)z

3. A. 5-x B. xy C. 3x2y D. -35.5

4. A. 13.3 B. (5-9x2)y C.5x2y D. 88

Câu 3: Cho biết phần hệ số, phần biến của đơn thức 2,5x2y, chọn câu trả lời đúng:

A. Phần hệ số: 2,5; phần biến: x2y B. Phần hệ số: 2,5; phần biến: x2

C. Phần hệ số: 2; phần biến:x2y D. Phần hệ số: 2,5; phần biến: y

Câu 4: Tính giá trị của biểu thức 2,5x2y tại x=1 và y=-1

A. -1,5 B. -2,5 C. 1,5 D. 2,5

Câu 5: Tính tích của hai đơn thức \(\frac{1}{4}\)x3y và -2x3y5, rồi tìm bậc cùa đơn thức thu được, chọn câu trả lời đúng:

A. \(\frac{-1}{2}\)x6y6, bậc bằng 12 B. \(\frac{-1}{2}\)x6y6, bậc bằng 6

C. -2x6y6, bậc bằng 12 C. -2x6y6, bậc bằng 6

Câu 6: Thu gọn đơn thức 6x.(-8x2y).(9x3y2z) rồi chỉ ra phần hệ số và bậc của chúng, chọn câu trả lời đúng:

A. Hệ số: 243, bậc bằng 10 B. Hệ số: -243, bậc bằng 10

C. Hệ số: 243, bậc bằng 12 D. Hệ số: -243, bậc bằng 12

2
28 tháng 4 2020

Câu 1:

1)B.\(-3xy\)

2)A.\(\frac{-5}{9}x^2y\) và B.\(\frac{x}{y}\)

3)C.\(\frac{2}{xy}\) và D.\(-5\)

4)C.\(9^2yz\)

Câu 2:

1)C.\(7+2x^2y\)

2)A.\(2+5xy^2\) và D.\(\left(x+2y\right)z\)

3)A.\(5-x\) và D.\(-35.5\)

4)A.\(13.3\) và B.\(\left(5-9x^2\right)y\)

Câu 3:A.Phần hệ số:2,5;phần biến:\(x^2y\)

Câu 4:B.\(-2,5\)

Câu 5:A.\(-\frac{1}{2}x^6y^6\) ,bậc bằng 12

Câu 6:B.Hệ số:-243,bậc bằng 10

Nhớ tick cho mình nha!

27 tháng 4 2020

nhìn có vẻ không rõ nên các bạn ráng giúp mình nha!!!!