Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) => (x-1) (3x +1) =0 =>
x-1 =0 => x =1
hoặc 3x +1 =0 => x =-1/3
b) =>2(x+3) - x(x+3) =0 => (x+3)(2-x) =0
x +3 =0 => x = -3
hoặc 2-x =0 => x =2
a) 15x2-3x=0
=>3x(5x-1)=0
=>2 TH
=>*3x=0 *5x-1=0
=>x=0 =>5x=1=>x=1/5
vậy x=0 hoặc x=1/5
b) (3x-2) (x+3)+ (x2-9)=0
=>(3x-2)(x+3)+(x-3)(x+3)=0
=>(x+3).(3x-2+x-3)=0
=>(x+3).(4x-5)=0
=> 2 TH
*x+3=0=>x=0-3=>x=-3
*4x-5=0=>4x=5=>x=5/4
vậy x=-3 hoặc x=5/4
c) (x-1)3- (x+1) (2-3x)=-3
\(\Rightarrow\left(x-1\right)^3-\left(x+1\right)\left(2-3x\right)+3=0\)
\(\Rightarrow\left(x^3-3x^2+3x-1\right)-\left(2x-3x^2+2-3x\right)+3=0\)
\(\Rightarrow x^3-3x^2+3x-1-2x+3x^2-2+3x+3=0\)
\(\Rightarrow x^3-3x^2+3x^2+3x-2x+3x-1-2+3=0\)
\(\Rightarrow x^3+4x=0\)
\(\Rightarrow x\left(x^2+4\right)=0\)
=> 2 TH
*x=0
*x^2+4=0
vì: x^2>0
do đó:x^2+4>0
=> x^2+4 ko có gt nào x t/m y/cầu đề bài
vậy x=0
\(a)\) \(\left(5x-1\right)^2-5x\left(5x-1\right)=0\)
\(\Leftrightarrow\)\(\left(5x-1\right)\left(5x-1-5x\right)=0\)
\(\Leftrightarrow\)\(\left(5x-1\right).\left(-1\right)=0\)
\(\Leftrightarrow\)\(5x-1=0\)
\(\Leftrightarrow\)\(5x=1\)
\(\Leftrightarrow\)\(x=\frac{1}{5}\)
Vậy \(x=\frac{1}{5}\)
\(b)\) \(x\left(x+1\right)\left(x+2\right)=0\)
Suy ra \(x=0\) hoặc \(x+1=0\) hoặc \(x+2=0\)
\(\Leftrightarrow\)\(x=0\) hoặc \(x=-1\) hoặc \(x=-2\)
Vậy \(x=0\) hoặc \(x=-1\) hoặc \(x=-2\)
\(c)\) \(\left(3x+2\right)x-3\left(3x+2\right)=0\)
\(\Leftrightarrow\)\(\left(3x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+2=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=0-2\\x=0+3\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x=-2\\x=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=3\end{cases}}}\)
Vậy \(x=\frac{-2}{3}\) hoặc \(x=3\)
Chúc bạn học tốt ~
a/ \(\left(5x-1\right)^2-5x\left(5x-1\right)=0\)
<=> \(\left(5x-1\right)\left(5x-1-5x\right)=0\)
<=> \(-1\left(5x-1\right)=0\)
<=> \(5x-1=0\)
<=> \(5x=1\)
<=> \(x=\frac{1}{5}\)
b/ \(x\left(x+1\right)\left(x+2\right)=0\)
<=> \(x=0\) hoặc \(\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}}\)
<=> \(x=0\)hoặc \(\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)
c/ \(\left(3x+2\right)x-3\left(3x+2\right)=0\)
<=> \(\left(3x+2\right)\left(x-3\right)=0\)
<=> \(\orbr{\begin{cases}3x+2=0\\x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}3x=-2\\x=3\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{2}{3}\\x=3\end{cases}}\)
(x+2)(x+3)-(x-2)(x+5)=0
=> x2+5x+6-x2-3x+10=0
=>2x+16=0
=>2x=-16
=>x=-8
a)
\(\Rightarrow x\left(x-5\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x-5=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=5\end{array}\right.\)
b)
\(\Rightarrow3x\left(x-2\right)-2\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(3x-2\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-2=0\\3x-2=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=2\\x=\frac{2}{3}\end{array}\right.\)
c)
\(\Rightarrow\left(3x-1\right)\left(5x+x-2\right)=0\)
\(\Rightarrow\left(3x-2\right)^2.2=0\)
\(\Rightarrow3x-2=0\)
\(\Rightarrow x=\frac{2}{3}\)
a) \(x^3+3x^2+3x+2=0\)
<=> \(x^3+x^2+x+2x^2+2x+2=0\)
<=> \(x\left(x^2+x+1\right)+2\left(x^2+x+1\right)=0\)
<=> \(\left(x+2\right)\left(x^2+x+1\right)=0\)
tự làm
b) \(x^4-2x^3+2x-1=0\)
<=> \(\left(x^4-3x^3+3x^2-x\right)+\left(x^3-3x^2+3x-1\right)=0\)
<=> \(x\left(x^3-3x^2+3x-1\right)+\left(x^3-3x^2+3x-1\right)=0\)
<=> \(\left(x^3-3x^2+3x-1\right)\left(x+1\right)=0\)
<=> \(\left(x-1\right)^3\left(x+1\right)=0\)
tự làm
c) \(x^4-3x^3-6x^2+8x=0\)
<=> \(x\left(x^3-3x^2-6x+8\right)=0\)
<=> \(x\left[\left(x^3+x^2-2x\right)-\left(4x^2+4x-8\right)\right]=0\)
<=>\(x\left[x\left(x^2+x-2\right)-4\left(x^2+x-2\right)\right]=0\)
<=> \(x\left(x-4\right)\left(x^2+x-2\right)=0\)
<=> \(x\left(x-4\right)\left(x-1\right)\left(x+2\right)=0\)
tự làm
a) ( x - 3 )2 - 4 = 0
<=> ( x - 3 )2 = 4
<=> \(\orbr{\begin{cases}\left(x-3\right)^2=2^2\\\left(x-3\right)^2=\left(-2\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\)
<=> \(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
Vậy S = { 5 ; 1 }
b) x2 - 9 = 0
<=> x2 = 9
<=> \(\orbr{\begin{cases}x^2=3^2\\x^2=\left(-3\right)^2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
Vậy S = { 3 ; -3 }
c) x( x - 2x ) - x2 - 8 = 0
<=> x2 - 2x2 - x2 - 8 = 0
<=> -2x2 - 8 = 0
<=> -2x2 = 8
<=> x2 = -4 ( vô lí )
<=> x = \(\varnothing\)
Vậy S = { \(\varnothing\)}
d) 2x( x - 1 ) - 2x2 + x - 5 = 0
<=> 2x2 - 2x - 2x2 + x - 5 = 0
<=> -x - 5 = 0
<=> -x = 5
<=> x = -5
Vậy S = { -5 }
e) x( x - 3 ) - ( x + 1 )( x - 2 ) = 0
<=> x2 - 3x - ( x2 - x - 2 ) = 0
<=> x2 - 3x - x2 + x + 2 = 0
<=> - 2x + 2 = 0
<=> -2x = -2
<=> x = 1
Vậy S = { 1 }
f) x( 3x - 1 ) - 3x2 - 7x = 0
<=> 3x2 - x - 3x2 - 7x = 0
<=> -8x = 0
<=> x = 0
Vậy S = { 0 }
a) 3x(x-1)+x-1=0
<=>3x(x-1)+(x-1)=0
<=>(x-1)(3x+1)=0
<=>x-1=0 hoặc 3x+1=0
<=>x=1 hoặc 3x=-1
<=>x=1 hoặc x=-1/3
b)2(x+3)-x^2 - 3x = 0
<=>2(x+3)-x(x+3)=0
<=>(x+3)(2-x)=0
<=>x+3=0 hoặc 2-x=0
<=>x=-3 hoặc x=2