Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(x^3-6x^2+12x-8=0\Rightarrow\)\(\left(x-2\right)^3=0\Rightarrow x=2\)
b.\(x^3+9x^2+27x+27=0\Rightarrow\left(x+3\right)^3=0\)\(\Rightarrow x=-3\)
c. \(8x^3-12x^2+6x-1=0\)
\(\Rightarrow\left(2x-1\right)^3=0\)
\(\Rightarrow x=\frac{1}{2}\)
\(1.6x\left(x-10\right)-2x+20=0\)
⇔\(6x\left(x-10\right)-2\left(x-10\right)=0\)
⇔ \(2\left(x-10\right)\left(3x-1\right)=0\)
⇔ x = 10 hoặc x = \(\dfrac{1}{3}\)
KL....
\(2.3x^2\left(x-3\right)+3\left(3-x\right)=0\)
⇔ \(3\left(x-3\right)\left(x^2-1\right)=0\)
⇔ \(x=+-1\) hoặc \(x=3\)
KL....
\(3.x^2-8x+16=2\left(x-4\right)\)
⇔ \(\left(x-4\right)^2-2\left(x-4\right)=0\)
⇔ \(\left(x-4\right)\left(x-6\right)=0\)
⇔ \(x=4\) hoặc \(x=6\)
KL.....
\(4.x^2-16+7x\left(x+4\right)=0\)
\(\text{⇔}4\left(x+4\right)\left(2x-1\right)=0\)
⇔ \(x=-4hoacx=\dfrac{1}{2}\)
KL.....
\(5.x^2-13x-14=0\)
⇔ \(x^2+x-14x-14=0\)
\(\text{⇔}\left(x+1\right)\left(x-14\right)=0\)
\(\text{⇔}x=14hoacx=-1\)
KL......
Còn lại tương tự ( dài quá ~ )
(2 - 3x)x - (7 - 2x)x = 5-x2
<=> 2x -3x2 -7x - 2x2 + x2= 5
<=> -5x - 4x2 =5
<=> -x(5 - 4x) = 5
<=> \(\orbr{\begin{cases}-x=5\\5-4x=5\end{cases}}\)<=>\(\orbr{\begin{cases}x=-5\\x=0\end{cases}}\)
vậy nghiệm của pt là x= -5 hoặc x=0
b) x2- 8x +16 = 0
<=> (x - 4)2
<=> (x - 4)(x-4) =0
<=> x-4 = 0
<=> x=4
vậy nghiệm của pt là x=4
c) nghiệm ko xác định
a/\(\left(2-3x\right)x-\left(7-2x\right)x=5-x^2\)
\(\Leftrightarrow2x-3x^2-7x+2x^2+x^2=5\)
\(\Leftrightarrow-5x=5\)
\(\Leftrightarrow x=-1\)
Vậy \(S=\left\{-1\right\}\)
b/ \(x^2-8x+16=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot4+4^2=0\)
\(\Leftrightarrow\left(x-4\right)^2=0\)
\(\Leftrightarrow x-4=0\)
\(\Leftrightarrow x=4\)
Vậy \(S=\left\{4\right\}\)
c/ \(x^2-6x+4=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot3+3^2-9+4=0\)
\(\Leftrightarrow\left(x-3\right)^2=5\)
\(\Leftrightarrow x-3=-\sqrt{5}\)hoặc \(x-3=\sqrt{5}\)
\(\Leftrightarrow x=-\sqrt{5}+3\)hoặc \(x=\sqrt{5}+3\)
Vậy \(S=\left\{-\sqrt{5}+3;\sqrt{5}+3\right\}\)
a) 9x2 - 1 = (3x + 1)(2x - 3)
=> 9x2 - 1 = 6x2 - 9x + 2x - 3
=> 9x2 - 6x2 + 7x - 1 + 3 = 0
=> 3x2 + 7x + 2 = 0
=> 3x2 + 6x + x + 2 = 0
=> 3x(x + 2) + (x + 2) = 0
=> (3x + 1)(x + 2) = 0
=>\(\orbr{\begin{cases}3x+1=0\\x+2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{1}{3}\\x=-2\end{cases}}\)
b) 2(9x2 + 6x + 1) = (3x + 1)(x - 2)
=> 2(3x + 1)2 - (3x + 1)(x - 2) = 0
=> (3x + 1)(6x + 2 - x + 2) = 0
=> (3x + 1)(5x +4 ) = 0
=> \(\orbr{\begin{cases}3x+1=0\\5x+4=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{1}{3}\\x=-\frac{4}{5}\end{cases}}\)
c) 27x2(x + 3) - 12(x2 + 3x) = 0
=> 27x2(x + 3) - 12x(x + 3) = 0
=> 3x(9x - 4)(x + 3) = 0
=> 3x = 0
9x - 4 = 0
x + 3 = 0
=> x = 0
x = 4/9
x = -3
d) 16x2 - 8x + 1 = 4(x + 3)(4x - 1)
=> (4x - 1)2 - 4(x + 3)(4x - 1) = 0
=> (4x - 1)(4x - 1 - 4x - 12) = 0
=> 4x - 1 = 0
=> x = 1/4
a)( 6x - 2)2 ( 5x - 2)2 - 2( 6x - 2 )( 5x - 2 )
=(6x-2)2-2(6x-2)(5x-2)+(5x-2)2
=[(6x-2)-(5x-2)]2
=(6x-2-5x+2)2
=X2
b) ( x2 + 3x + 1)2 - 2( x2 + 3x + 1)( 3x + 1) + ( 9x2 - 6x + 1)
=( x2 + 3x + 1)2 - 2( x2 + 3x + 1)( 3x + 1)+[(3x)2-2.3x.1+12]
=( x2 + 3x + 1)2 - 2( x2 + 3x + 1)( 3x + 1)+(3x+1)2
=[( x2 + 3x + 1)-( 3x + 1)]2
=( x2 + 3x + 1- 3x - 1)2
=(x2)2
=x4
\(a,x^3-3x^2+3x-1=0\)
\(\Leftrightarrow\left(x-1\right)^3=0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
\(b,\left(x-2\right)^3+6\left(x+1\right)^2-x+12=0\)
\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x+12=0\)\(\Leftrightarrow x^3+23x+10=0\) (1)
Đặt \(t=\dfrac{x}{\dfrac{2\sqrt{69}}{3}}\Leftrightarrow x=\dfrac{2\sqrt{69}}{3}t\)
Khi đó: (1) \(\Leftrightarrow4t^3+3t=-0,2355375386\)
Đặt a= \(\sqrt[3]{-0,2355375386+\sqrt{-0,2355375386^2+1}}\)
Và \(\alpha=\dfrac{1}{2}\left(a-\dfrac{1}{a}\right)\) , ta được:
\(4\alpha^3+3\alpha=-0,2355375386\) , vậy \(t=\alpha\) là nghiệm của pt
Vậy t= \(\dfrac{1}{2}\left(\sqrt[3]{-0,2355375386}+\sqrt{-0,2355375386^2+1}\right)\) \(\left(\sqrt[3]{-0,2355375386-\sqrt{-0,2355375386^2+1}}\right)\)\(=-0,07788262891\)
\(\Rightarrow x=\dfrac{2\sqrt{69}}{3}.t=-0,4312944692\)
\(c,x^3+6x^2+12x+8=0\)
\(\Leftrightarrow\left(x+2\right)^3=0\)
\(\Leftrightarrow x+2=0\Rightarrow x=-2\)
\(d,x^3-6x^2+12x-8=0\)
\(\Leftrightarrow\left(x-2\right)^3=0\)
\(\Rightarrow x-2=0\Rightarrow x=2\)
\(e,8x^3-12x^2+6x-1=0\)
\(\Leftrightarrow\left(2x-1\right)^3=0\)
\(\Rightarrow2x-1=0\Rightarrow x=\dfrac{1}{2}\)
\(f,x^3+9x^2+27x+27=0\)
\(\Leftrightarrow\left(x+3\right)^3=0\)
\(\Rightarrow x+3=0\Rightarrow x=-3\)
Bài 1:tìm x ,biết:
a) (2x - 1)(3x + 2) - 6x(x + 1) = 0
\(\Leftrightarrow6x^2+x-2-6x^2-6x=0\)
\(\Leftrightarrow-5x=2\)
\(\Leftrightarrow x=\frac{-2}{5}\)
b) \(\left(4x-1\right)^2-\left(2x+1\right)\left(8x-3\right)=0\)
\(\Leftrightarrow16x^2-8x+1-16x^2-2x+3=0\)
\(\Leftrightarrow-10x=-4\)
\(\Leftrightarrow x=\frac{2}{5}\)
c) \(4x^2-1=2\left(2x+1\right)\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-1\right)-2\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{3}{2}\end{cases}}\)
2a) \(4x^2-9y^2-6y-1=4x^2-\left(3y+1\right)^2\)
\(=\left(2x-3y-1\right)\left(2x+3y+1\right)\)
b) \(4x^2-1-2x\left(2x-1\right)=\left(2x-1\right)\left(2x+1\right)-2x\left(2x-1\right)\)
\(=1.\left(2x-1\right)\)
c) \(x^2-8x-4y^2+16=\left(x-4\right)^2-4y^2\)
\(=\left(x-4-2y\right)\left(x-4+2y\right)\)
d) \(9x^2-12x-y^2+4=\left(3x-2\right)^2-y^2\)
\(=\left(3x-2-y\right)\left(3x-2+y\right)\)
e) \(4x^2+10x-5=4x^2+2.2.\frac{5}{2}x+\frac{25}{4}-\frac{25}{4}-5\)
\(=\left(2x+\frac{5}{2}\right)^2-\frac{45}{4}\)
\(=\left(2x+\frac{5+3\sqrt{5}}{2}\right)\left(2x+\frac{5-3\sqrt{5}}{2}\right)\)
a) \(\left(y-1\right)^2=9\)
\(\Rightarrow\left(y-1\right)^2=3^2=\left(-3\right)^2\)
\(\Rightarrow x-1=3\Rightarrow x=4\)
\(\Rightarrow x-1=-3\Rightarrow x=-2\)
Vậy: \(x=4\) hoặc \(-2\)
a /.
\(3x^2-8x-\left(6x-16\right)=0\)
\(\Leftrightarrow3x^2-8x-6x+16=0\)
\(\Leftrightarrow x\left(3x-8\right)-2\left(3x-8\right)=0\)
\(\Leftrightarrow\left(3x-8\right).\left(x-2\right)=0\).
\(\Rightarrow\left[{}\begin{matrix}3x-8=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}\\x=2\end{matrix}\right.\)
Vậy \(x=\dfrac{8}{3}\) hay \(x=2\)
b /.
\(2\left(3x-2\right)^2-9x^2+4=0\)
\(\Leftrightarrow2\left(9x^2-12x+4\right)-9x^2+4=0\)
\(\Leftrightarrow18x^2-24x+8-9x^2+4=0\)
\(\Leftrightarrow9x^2-24x+12=0\)
\(\Leftrightarrow9x^2-18x-6x+18=0\)
\(\Leftrightarrow9x\left(x-2\right)-6\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(9x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\9x-6=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy \(x=2\) hay \(x=\dfrac{2}{3}\)
Bạn ơi dấu tương đương thứ 4 sao lại là +18 ạ?Phải là 12 chứ?